ED 03
Why Solve Problems? - Part 1:
Designing an Interview for Instructors*

Edit Yerushalmi

Ken Heller, Patricia Heller, Charles Henderson, Vince Kuo
University of Minnesota

http://www.physics.umn.edu/groups/physed/

* Supported in part by NSF grant #DUE-9972470
Rationale for Study

Wide agreement:

• Traditionally physics is taught by solving problems
• Many students cannot solve traditional problems
• Many of those who can do not understand the underlying physics concepts [McDermott, 1984, Halloun & Hestenes, 1985]

Research based curricular efforts:

• Directly building students’ conceptual knowledge
 [Mazur et al - Peer Instruction, McDermott et al - Tutorials]
• Developing student problem solving skills
 [Heller et al - CGPS, Mestre et al - MOP, Reif et al - PALs, Van Heuveln - OCS]

Instructors’ practice: Reflect some aspects of research based curricula. Yet, seldom are they fully implemented
Reflects tension between those who shape the learning environment

Curriculum developers
- Learning vision
- Control artifacts
- Complain about instruction

Instructors
- Teaching realities
- Control schedules, roles
- Complain about curriculum
Instructor independent curricula

No instructor or instructor proof
Instructor dependent curricula

Need for communication, is there a common language?

E.g. What is a “problem”?

Research defined terms

??
Focus of study:
Faculty beliefs about learning and teaching of **problem solving**

1st stage: Elicit parameters for instructional choices
⇒ Interview sample (Minnesota sample)

2nd stage: Map parameters into the community
⇒ Directed survey (National sample)

Goal: Use results to
- Clarify language and promote instructors’ discussion
- Match curricular design to instructors concerns
- Determine possible professional development
Research method

Caution!! Schoenfeld: Different instructor beliefs are activated by different events in actual practice.

⇒ Beware of general setting!
Capture instructors’ rationale for their choices by inducing reflection on practice through comparisons between variety of curricular artifacts

Interview artifacts: More from less
“Universal”: Range of common instructional practices
Range of problem solving processes (research based)

• 5 problems (same physics situation)
• 3 instructors’ solutions (to 1st problem)
• 5 students’ solutions (to 1st problem)

Note similarities to preconceptions research
Problems

Verbal
You are *whirling a stone tied to the end of a string* around in a *vertical circle* having a *radius* of 65 cm. You wish to whirl the stone fast enough so that when it is *released at the point where the stone is moving directly upward*, it will *rise to a maximum height of 23 meters above the lowest point in the circle*. In order to do this, what force will you have to exert on the string when the stone passes through its *lowest point* one-quarter turn before release? Assume that by the time that you have gotten the stone going and it makes its final turn around the circle, you are holding the *end of the string at a fixed position*. Assume also that air resistance can be neglected. *The stone weighs 18 N.*

Schematic + Stepped
A 1.8 kg mass is attached to a *frictionless pivot point*...

A) What velocity, v_1, must the stone have when released in order to rise to 23 meters above the lowest point in the circle?

B) ...

C) ...

+ Multiple-choice, “Real-world” context, & Qualitative
Bare bones

The tension does no work

Conservation of energy between point A and B

\[Mv_A^2/2 = mgh \]

\[V_A^2 = 2gh \]

At point A, Newton's 2nd Law gives us:

\[T - w = ma \]

\[T = 18_N + 2 \cdot 18_N \cdot 23_m / .65_m = 1292_N \]

Decision making process

Approach:
I need to find \(F_m \), force exerted by me

A)...

B) I can relate \(v_b \) to \(v_t \) using either
 i) energy, ii) Dynamics and kinematics

ii) Messy since forces/accelerations change through the circular path.

i) I can apply work-energy theorem for stone. Path has 2 parts: ...

Execution:

A) Relate \(T_b \) to \(v_b \): \(\sum F_R = ma_R \)

...

Check limits: \(T_b \uparrow \) as \(R \downarrow \)
Student solutions

Reasoned, wrong

Find velocity to reach height (Free Fall)

\[v_f^2 - v_i^2 = 2a(y_f - y_i) \]
\[a = \frac{2L}{(h)} \]
\[v_f = \sqrt{2g(h-y)} \]
\[= \sqrt{2 \times 9.8 \times (23-2.65)} \]
\[= 20.9 \text{ m/s} \]

It can’t be that \(v_f = v_i \) but I don’t know how to relate them. If \(v_f = v_i \), then:

Find force

\[\vec{F} = m \vec{a} \]
\[T - mg = m\vec{a} \]
\[T = mg + \frac{m \cdot v_f^2}{R} = 18N + \frac{18N}{0.65m} \left(20.9 \text{ m/s} \right)^2 \]
Force excerted by me \(= 1256N \)

Looks large, but stone needs to go up for

\[V^2 = 2gh \]
\[F - mg = \frac{m 2gh}{R} \]
\[F = 18 + \frac{2 \cdot 18 \cdot 23}{0.65} = 1292N \]

+ 3 others: all 5 are based on actual student solutions from final exam at the University of Minnesota
“Research” → Interview questions

Goal: To find out instructors’ teaching models

S_i What students bring to the class?
→ What instructors do to promote learning?
 What students do to learn?
S_f What students take from class?

All in respect to problem solving

Constraints on teaching model

[Reif, 1994]

Interaction between student and instructor that shapes the learning environment
Structure of the interview

Homework problem. 1½ hours, four parts.

1st) **Instructor solutions**: Focus on instructor, correct solution
2nd) **Student solutions**: What students give to instructors
3rd) **Problems**: Expand to different problems

Story line anchored in instructor practice.

In all 3 parts:
- How and why artifact is used?
 - Abstract
 - Concrete
- Reflect on students’ problem solving based on artifacts
 - each problem solving feature on separate index card

4th) Instructor sorts index cards into categories of their choice
- Questions regarding these categories
Administration of interview

Physics faculty in Minnesota, taught introductory calculus-based physics course in the last 5 years, could be visited and interviewed in a single day, randomly selected (107 possible).

Final sample: 31 faculty members (From 36 contacted 5 declined to be interviewed).

Roughly divided between:
1) Community College
2) Private College
3) Research University
4) State College

Many did not want to quit interview after 1½ hours
Great, we have a lot to say
Oh no!! They are trying to look into on my mind

<table>
<thead>
<tr>
<th></th>
<th>Students</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>Pre-conceptions</td>
<td>Conceptions</td>
</tr>
<tr>
<td>Debate</td>
<td>Theories vs. P-primes</td>
<td>Models vs. Fragments</td>
</tr>
<tr>
<td>Agree</td>
<td>Should be taken into account</td>
<td></td>
</tr>
</tbody>
</table>
Lessons from pilot testing

In pilot versions the interview consisted of several parts, Each consisted of set of questions around type of artifact

Difficulties and refinements:
1) Different teaching models evoked in different interview parts
 ⇒ Represent research questions in all interview parts
2) Problem moderately difficult for students can’t be instantaneously solved by instructors
 ⇒ sending the problem prior to the interview
3) Range of artifacts makes it hard to keep the faculty attention
 ⇒ Limit # of artifacts and design coherent story line
Example - Part 1, Instructor solution

Q1: In what situations [during lecture, after test...] are students provided with examples of solved problems in your class. How does this work?

Q2: How would you like your students to use the solved examples you give them in these different situations? Why?

Q3: Scan through each of these instructor solutions. Please describe how these solutions are similar or different to your solutions. Please explain your reasons for writing solutions the way you do.

Q4: Looking at the instructor solutions, what aspects/components that you consider important in problem solving are represented in these instructor solutions, and what aspects are not represented?