The Software Framework for C₃PO: (Customizable Computer Coaches for Physics Online)

Kristin Crouse¹, Evan Frodermann¹, Ken Heller¹, Leon Hsu¹, Qing (Xu) Ryan¹, Bijaya Aryal²

¹University of Minnesota–Twin Cities
²University of Minnesota–Rochester

Supported by NSF DUE-1226197 and the University of Minnesota.
Overview

• Written in Adobe Flash, consists of two graphical user interfaces (GUI):
Program Structure

• Three types of coach building blocks:
 – primitives, visual elements, & modules
Physics Exercise

What is the speed at which the Moon orbits the Earth?
Primitives

- Earth
- Moon
- M_{earth}
- M_{moon}
- R_{moon}
- $V_{\text{moon}} = ??$
- Dynamics
- Instant at which moon orbits earth.
- Earth + Moon System
- Gravitational Force
- Centripetal Force
- Orbital Velocity of Moon
Primitives

- Components of a written solution:
 - Objects, Quantities, Approaches, Systems, Assumptions, Equations, etc.

\[\text{Earth} = 5.98 \times 10^{24} \text{ kg} \]

\[\text{Moon} = 7.34 \times 10^{22} \text{ kg} \]

\[G = 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2} \]

\[R_{\text{moon}} = 385,000 \text{ km} \]

\[M_{\text{moon}} = 7.34 \times 10^{22} \text{ kg} \]

\[V_{\text{moon}} = ?? \]

Dynamics

\[\vec{F}_{\text{net}} = m\vec{a} \]

Neglect interactions with sun and other planets.

\[F_G = \frac{Gm_1 m_2}{r^2} \]

\[a_c = \frac{v^2}{r} \]
Visual Elements

Instant at which moon orbits earth.

\[V_{\text{moon}} \]

\[a_c \]

\[F_g \]

\[M_{\text{moon}} \]

\[M_{\text{earth}} \]

\[R_{\text{moon}} \]
Visual Elements

Visual representation of the primitives
Modules

Navigator

- Focus the Problem
- Picture(s)
- Which object(s)?
 - Situations and views
 - Quantities
 - Question(s)
 - Assumption(s)
 - Approach(es)
- Describe the Physics
 - Define Diagrams
 - Target Quantities
 - Quantitative Relation
- Plan the Solution
- Execute the Plan
- Evaluate the Solution

Word Problem

Instant at which moon orbits earth.

Diagram:

- V_{moon}
- a_c
- M_{moon}
- M_{earth}
- F_g
- R_{moon}
Modules

Parent-child relationships of Folders, Questions & Actions

Student’s path is not fixed.
Actions

– Actions can be used to move the program forward and change the state of the coach

 • The principle action is unlocking a building block of the coach, for example:
 – Unlocking a visual element makes it visible
 – Unlocking a primitive allows that primitive to be accessible
 – Unlocking a module allows questions contained within to be viewed

– Actions give the coach flexibility

 • Students can be fully constrained to answer questions in a certain order OR students can choose the order
 • Students can choose the amount of coaching they receive
Example: Unlocking a primitive

We often need a visual representation of the problem to help organize a problem. Which object(s) do you wish to represent in a picture of the problem?

Choose all appropriate answers below.

- Earth
- Moon
- Yourself

Instant at which moon orbits earth.
Example: Check whether primitives have been unlocked
Demonstration

- Student creates a diagram from a picture