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Writing Across the Curriculum

The writing-intensive requirement at the University of Minnesota is related to a national
movement called “Writing-Across-the-Curriculum,” or WAC. This WAC movement
advocates the instruction of writing across and within disciplines, as it holds the belief
that writing is important to all subject areas and can be effectively instructed in specific
disciplinary contexts. In addition, the WAC movement recognizes some basic
assumptions about the act of writing:

¢ Writing is a learning activity that involves problem solving and communication skills

+ Writing is a social activity, shaped by contextual factors such as a community of
peers ‘

¢ Writing is not séparable from content

Forms of writing vary from context to context (i.e., Anthropology vs. Physics)

¢ Certain factors of writing are central to all writing acts, such as audience, purpose,
context, organization, support, design, and expression.

L 4

For an overview about the Writing-Across-the-Curriculum movement, see the following
sources: ’

Bazerman, Charles, and David R. Russell. Landmark Essays on Writing Across the
Curriculum. Hermagoras Press, 1994.

Why Writing Intensive Courses are Important

Writing-intensive courses address the idea that writing is important to learning technical
content. This concept should be applied with careful consideration. Because writing is a
learning activity, instructors should feel free to use writing assignments that allow
students to explore new avenues for learning technical content such as problem solving,
writing to specific audiences, or writing using discipline-specific formats or genres.
Instructors should acknowledge that writing involves more than simply mastering
grammar, spelling, and mechanics.

Writing-intensive courses in Physics provide students the opportunity to learn about
Physics through written assignments that may involve problem solving, language usage,
and organizational skills. Sample assignments include: :

¢ Lab reports ¢ Progress reports

¢ Feasibility reports/studies ¢ Manuals

¢ Instructions ¢ Proposals

¢ Resumes ¢ Cover letters

¢ Abstracts and summaries ¢ Technical descriptions
¢ Process explanations ¢ Figures and graphs
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Exercise in Defining “Good” and “Bad” Writing:

What words or characteristics come to mind when trying to define “good™ writing?

What words or characteristics come to mind when trying to define “bad” writing?
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e #1.

In this experiment, we were to determine when two objects stick together after a
collision, what is the final velocity of the objects as a function of the initial velocity of the
moving object and their masses. First, we took two carts of the same mass and gave the
first cart an initial velocity towards a second stationary cart. We then measured the initial
velocity of the first cart and the final velocity of the two cart’s stuck together using the
LabView™. We also did trails for the first cart having more mass and less mass than the
stationary cart, although the sum of the masses was always equal. We also calculated the
final velocity of the two carts stuck together as a function of the initial velocity of the

moving cart, and compared our results.

Statement of the problem

Predictions

My group predicted that the equation to determine the final velocity when two
objects stick together as a function of the initial velocity of the moving object and their
masses to be:

ve=mv; / m+mg

(v = the final velocity of the two objects stuck together, m; = the mass of the moving
object, v; = the initial velocity of the moving object, m; = the mass of the stationary
object.)
We came up with this solution by first realizing that the initial momentum of the system
was equal to:

& pi1=mYy
(p = momentum) This equation is true because momentum is equal to the mass of an
object multiplied by the initial velocity of the object. Next, we determined the

momentum of the two carts stuck together to be:
bz = (m+ my) Vs

This equation is true because the sum of the masses (total mass) muiltiplied by their
velocity equals'the two cart’s momentum when they were stuck together. Then, we came
to the conclusion that the momentum in the system would be conserved.

P =p2 2 oy vi = (Mt mg) ve
Finally, we derived the value of the final velocity from the equation of momentum

conservation.
my v; = (m+ mg) ve > vp=my v / (m+ m;)

This equation is correct because the units of measurement are also correct.
m/s = (kg e m/s) / (kg + kg) > m/s = m/s
Data and Results

First, we measured the masses of the carts for all three trials. Then, we used the
LabView™ to experimentally determine the velocities of the carts before the collision
and after the collision when they were stuck together.
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In our first trial, when the masses of the carts were equal the initial velocity of the

moving cart equaled:
X =0+ .40t > v;= .40 m/s )

After the carts stuck together we also measured their final velocity to be:

X=0+.19t = v=.19m/s
We repeated this procedure for the other two trials when the mass of the moving cart was
greater than the stationary cart, and the mass of the moving cart was less than the

“stationary cart.

Mass of the moving cart | Mass of the stationary cart | Initial velocity | Final velocity
77150 kg 77150 kg .40 m/s .19 /s
1.03650 kg .50650kg 31 m/is .19 m/s
.50650 kg 1.03650 kg 43 m/s .14 m/s

The uncertainty of the mass measurements comes from the systematic error of the
balance, which is as high as (+/-) .01 g or .00001 kg. The uncertainty of the initial and
final velocity measurements could be as high as (+/-) .01 m/s and this was shown in the

discrepancies of the data points on the LabView™ Vx plot.
Next, we were to compare our experimental values to our calculated values. To

find our calculated results, we used the equation to find tht final velocity of the carts
stuck together as a function of the initial velocity of the moving cart.

ve=mv; / mptmy
We then plugged in our experimental values for the masses of the carts and the initial
velocity of the moving cart to calculate the final velocity.

ve=mv; / my+mg <> ve= (.77150 kg)}(.40m/s) / (77150 kg) + (.77150 kg) = .20 m/s

We repeated this procedure for the other two trials when the mass of the moving cart was
greater than the stationary cart, and the mass of the moving cart was less than the mass of
the stationary cart.

Mass of the moving cart | Mass of the stationary cart | Initial velocity | Final velocity
77150 kg 77150 kg 40 m/s 20m/s -
1.03650 kg .50650 kg 31m/s 21 m/s
.50650 kg 1.03650 kg 43 m/s .14 n/s

The uncertainty of the mass measurements comes from the systematic error of the
balance, which is as high as (+/-) .01 g or .00001 kg. The uncertainty of the initial
velocity measurements could be as high as (+/-) .01 m/s and this was shown in the
discrepancies of the data pomts on the LabView™ Vx plot. A]though, the uncertainty of
the final velocity in this case is hard to determine because it is a combmation of the
uncertainty of the mass measurement and the uncertainty of the initial velocity of the

moving cart.
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Conclusion

We experimentally determined and calculated the final velocities of the carts to be:

Mass of the moving | Mass of the stationary | Final experimental Final calculated
~cart cart velocity velocity
77150 kg 77150 kg 19 m/s 20 m/s
1.03650 kg .50650 kg 19 m/s 21 m/s
.50650 kg 1.03650 kg g .14 m/s 14 m/s

In conclusion, I feel that our experimental results were accurate because in comparing
them with our calculated results, they were consistently close to one another. The highest
percent error between any of the measurements was,
o (21 nv/s - .19m/s) / (.21 m/s) @ 100% = 9.5%

I believe our results turned out well because my group did a good job in measuring the
masses of the carts and the initial and final velocity. Our careful experimental procedure
eliminated some of the uncertainty in the experiment. Althpugh, the uncertainty of the
mass measurements comes from the systematic error of the balance, which is as high as
(+-) .01 g or .00001 kg. The uncertainty of the initial velocity measurements could be as
high as (+/-) .01 m/s, and this was shown in the discrepancies of the data points on the

LabView™ Vx plot.
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Statement of Problem ‘

The problem my group was trying to solve was to find the acceleration of
an object moving up and down a ramp at all times during its motion. We tilted a
ramp at a fairly low angle and gave a cart an initial push toward the top. We
clocked the time and measured the distance that the cart traveled throughout
the entire motion, which turned out to be a distance of 120 centimeters.

The equipment we used included a video camera, the LabVIEW program
on a computer, a stopwatch, a meter stick, small-cart, and the ramp apparatus.
The reason we chose this equipment is because of its size. We needed an
accurate interpretation of an amusement park cart and figured that this way with
this gear would be the best method. The LabVIEW program allows us to analyze
the motion with a more thorough method than strictly human measurement and
computation. '

Prediction

I predicted that the graph of the entire motion of the cart would look
something like this:

G

t
I thought that the cart would start to lose acceleration on the way to the top and
be exactly zero meters/second squared at the peak. The cart would then regain
its acceleration on the way down.

I decided that the best relationship between acceleration would be:

A=v1-v0/t1-t0

XV
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We came up with this because we thought that we would be able to solve for the
initial and final velocity of the cart at two given points on the graph and find the
acceleration. We also knew than acceleration could be derived from an equation
be taking the second derivative of that equation:

A=d/dt(dv/dt)

When the group made a prediction graph on the LabVIEW program it
looked different from all our original predictions. It is included in this report
marked figure 1; the program also gave us a prediction equation. From it we
derived an equation for the acceleration at any given point.

Data and Results 1

The first step in our lab was setting up our ramp to the degree that we
wanted. Then we had to fit the fixed distance we wanted our cart to travel to
the screen on the computer. To do this we tried different camera angles and
adjusted the zoom on the lens until the picture fit perfectly. Next we simply
gave the cart its initial push and recorded it with the video camera. Lastly we
integrated the movie into the LabVIEW program on the computer and took our
time trials of the round trip.

When the cart went up and down the track we took three different
measurements of time: 3.91s, 3.81s, and 3.85s. The average time turned out to
be 3.86 seconds, and the average deviation was 0.04 seconds.

There was a problem in collecting all this data, that is the human error.
Time is what we had the most trouble with; our time trials were not all that far
apart, yet they are not all that close together. There was also a lot of
uncertainty in our measured fixed distance. It is impossible to have a person
push a cart an exact distance on that ramp. We had to estimate from our movie
the distance, we decided on 120 centimeters, we could be off by a centimeter or
two.

I mathematically calculated the uncertainty of our time trials; the average

deviation was 0.04 seconds so the uncertainty is 3.86+/-0.04 seconds. The
uncertainty of the distance the cart traveled is estimated at +/-1.50 centimeters.
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Conclusions

Our graph indicates that displacement is dependent upon time in this
experiment. Our equation led us mathematically to discover that the
acceleration of the cart during the trip is 54.4 centimeters/second squared.

Our predicted graph was quite a bit smaller than the actual graph. By
saying it was smaller I mean that the peak of the graph (where the acceleration
is zero) is not at as high of a displacement value as it should be. The predicted

equation was: .
X(t)=62.00t-16.2t" 2

Although all the variables are in the right spots and the p?wers are correct, both
of the coefficients are incorrect. The actual equation is:

X(t)=112.0t-27.2t"2

When the second derivative is taken of this equation you get the correct
acceleration value for the cart.

To check and make sure the answer is correct I plugged the acceleration
into the equation:

X1-X0=vO(t1-t0)+.5a(t1-t0)

To find the speed at zero, I then compared that answer to the answer I got from
the velocity equation with 2.0 seconds as the time:

V(t)=112.0-54.4t
The answers turned out to be the same, 3.2 centimeters/second, which brings

me to the conclusion that the acceleration for the cart along the motion is
54.4 centimeters/second squared.
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