LABORATORY V
MAGNETIC FIELDS AND FORCES

Magnetism plays a large part in our modern world's technology. Magnets are used today to image parts of the body, to explore the mysteries of the human brain, and to store analog and digital data. Magnetism also allows us to explore the structure of the Universe, the atomic structure of materials, and the quark structure of elementary particles.

In this set of laboratory problems, you will map magnetic fields from different sources and use the magnetic force to deflect electrons. The magnetic interaction can best be described using the concept of a field. For this reason, your experiences exploring the electric field concept in the first lab are also applicable in this lab. There are similar activities in both labs so you can experience the universality of the field concept. Although they are related, the magnetic force is not the same as the electric force. You should watch for the differences as you go through the problems in this lab.

OBJECTIVES:
After successfully completing this laboratory, you should be able to:

• Explain the differences and similarities between magnetic fields and electric fields.
• Describe magnetic fields near sources, such as permanent “bar” magnets, straight current-carrying wires, and coils of wire.
• Calculate the magnetic force on a charged particle moving in a uniform magnetic field and describe its motion.

PREPARATION:
Read Fishbane: Chapter 28, sections 1-5. Review your notes from the first lab (Electric Fields and Forces).

Before coming to lab you should be able to:

• Add fields using vector properties.
• Use the vector cross product.
• Calculate the motion of a particle with a constant acceleration.
• Calculate the motion of a particle with an acceleration of constant magnitude perpendicular to its velocity.
• Write down the magnetic force on an object in terms of its charge, velocity, and the magnetic field through which it is passing.
PROBLEM #1
PERMANENT MAGNETS

You have a job working at a company that designs magnetic resonance imaging (MRI) machines. The ability to get a clear image of the inside of the body depends on knowing precisely the correct magnetic field at that position. In a new model of the machine, the magnetic fields are produced by configurations of permanent magnets. You need to know the map of the magnetic field from each magnet and how to combine magnets to change the magnetic field at any point. You decide to determine the form of the magnetic field for various combinations of bar magnets, and to draw vector diagrams (field maps) for each combination.

EQUIPMENT

You will have two permanent magnets and a clear plate filled with a viscous liquid along with small pieces of Taconite, an iron-rich ore. When a magnet is placed on top of one of these plates, the Taconite pieces at each point align themselves with the magnetic field. You will also have a compass. Some possible magnet configurations are as follows:

Figure I
N
S

Figure II
N
S

Figure III
N
S

Figure IV
N
S

Figure V
N
S

Figure VI
N
S

PREDICTION

Draw vector diagrams to describe the field for each configuration above.
WARM-UP QUESTIONS

Read: Fishbane Chapter 28 Section 1.

1. Make a sketch of all the magnets in each figure. Be sure to label the poles of the magnets.

2. Choose a point near the pole of a magnet. At that point draw a vector representing the magnetic field at that point. The length of the vector should give an indication of the strength of the field. Keep in mind that:
 - The field can have only one value and direction at any point.
 - The direction of the magnetic field points away from a North pole, and toward a South pole.
 - The field at a point is the vector sum of the fields from all sources.

3. Move a short distance away in the direction of the vector and choose another point. At that point draw another magnetic field vector. Continue this process until you reach another magnetic pole. Choose another point near a pole and start the process again. Continue until you can see the pattern of the magnetic field vectors for all parts of the configuration.

EXPLORATION

WARNING: The viscous liquid (glycerin) in the Taconite plate may cause skin irritation. If a plate is leaking, please notify your lab instructor immediately.

Check to make sure your Taconite plate is not leaking. Gently shake the plate until the Taconite is distributed uniformly.

Properties of magnets can change with handling. Check the poles of the magnet with your compass. Inform your lab instructor if the magnet does not seem to be behaving as you would expect.

Place a permanent magnet on the Taconite plate. How long do you need to wait to see effect of the magnetic field? Is it what you expected? Try some small vibrations of the Taconite plate. How does the pattern in the Taconite relate to the direction that a compass needle points when it is directly on top of the Taconite sheet?

Try different configurations of magnets and determine how to get the clearest pattern in the Taconite. What can you do to show that the poles of a magnet are not electric charges? Try it.
PROBLEM #1: PERMANENT MAGNETS

MEASUREMENT AND ANALYSIS

Lay one bar magnet on the Taconite plate. In your journal, draw the pattern of the magnetic field produced.

Repeat for each figure in the predictions.

CONCLUSION

How did your predictions of the shape of the magnetic field for each configuration of magnets compare with your results? What influence does the field have on the Taconite filings? Does the field cause a net force? Does the field cause a net torque? If so, in what direction?
PROBLEM #2: CURRENT CARRYING WIRE

Your friend's parents, who live on a dairy farm, have high-voltage power lines across their property. They are concerned about the effect the magnetic field from the power lines might have on the health of their dairy cows grazing nearby. They bought a device to measure the magnetic field. The instructions for the device state that it must be oriented perpendicular to the magnetic field. To measure the magnetic field correctly, they need to know its direction at points near a current carrying wire. They know you have taken physics, so they ask you for help. First, you decide to check a simulation of the magnetic field of a current carrying wire. Next, to confirm your prediction and simulation, you decide to use a compass along with a current carrying wire. You decide to investigate both a straight wire and a loop of wire.

EQUIPMENT

You will have a magnetic compass, a length of wire, a meter stick, a power supply, and the EMField application. You will also have a Hall probe and the accompanying software.

PREDICTIONS

Sketch your best guess of the situations described in the problem.

EXPLORATION

To open the EMField application, just click on the EMField icon on your desktop. Click anywhere for instructions.

To study magnetic fields of current carrying wires, you will want to choose the 2D Line Currents option in the Sources menu. At the bottom of the window, there will be a list of various line currents of different magnitudes. Choose one by clicking and dragging it into the screen. Under the Field and Potential menu, you should choose the Field Vector option. This option for magnetic fields behaves exactly like that for electric fields. Hence, it is useful to review the EMField instructions from labs 1 and 2. Once you have a clear picture of what the direction of the field is, print it out using the Print command under File. You might also find it useful to try different sizes of current to note any changes.

Once you are finished with EMField, it is time to move to the physical apparatus. Keep in mind that a compass needle, because it is a small magnet, aligns itself parallel to the local magnet field.

Attach enough wires together to give a total length of at least half a meter. Is there any evidence of a magnetic field from a non current-carrying wire? To check this, stretch the wire vertically and move your compass around the center of the wire. Does the compass always point in the same direction?
WARNING: You will be working with a power supply that can generate large electric voltages. Improper use can cause painful burns. **To avoid danger, the power should be turned OFF and you should WAIT at least one minute before any wires are disconnected from or connected to the power supply. NEVER GRASP A WIRE BY ITS METAL ENDS!**

Connect the wire to the power supply and turn the power supply on (**do not use the PASCO power source**). The circuit breaker built into the power supply minimizes the hazard of this short circuit.

Stretch the wire vertically and move your compass around the wire. Start where you expect the magnetic field to be largest. Is there any evidence of a magnetic field from a current carrying wire? Watch the compass as you turn the current on and off. Does the compass always point in the same direction? How far from the wire can the compass be and still show a deflection? Develop a measurement plan.

Now make a single loop in the wire through which you can easily move the compass. Move the compass around the loop. In which direction is the compass pointing? How far away from the loop can you see a deflection? Is this distance larger along the axis of the loop or somewhere else?

Set up your Hall probe as explained in Appendices D and E. Before you push any buttons on the computer, locate the magnetic field strength window. You will notice that even when the probe is held away from obvious sources of magnetic fields, such as your bar magnets, you see a non-zero reading. From its behavior determine if this is caused by a real magnetic field or is an electronics artifact or both?

Go through the Hall probe calibration procedure outlined in Appendix E. Be sure the switch on your amplification box agrees with the value on the computer. Why do you rotate the probe 180 degrees for the calibration process? Does the Hall probe ever read a zero field?

Hold the Hall probe next to the wire; how can you use the information from your compass to decide how to orient the probe? Read the value displayed by the Hall probe program. What will happen when you move the probe further from the wire? Will you have to change the orientation of the probe? How will you measure the distance of the probe from the wire?

MEASUREMENT

Use your measurement plan to create a map of the magnetic field around the stretched wire and the looped wire. Include the magnitude and direction of the magnetic field for each distance.

ANALYSIS

The direction of the magnetic field at a point near a current-carrying wire can be found by using the "right-hand rule" that is described in your text. How does the "right-hand rule" compare to your measurements?
CONCLUSION

How did your predictions of the map of the magnetic field near current-carrying wires compare with both physical and simulated results? How do they compare with the "right-hand rule"?
PROBLEM #3
MEASURING THE MAGNETIC FIELDS
OF PERMANENT MAGNETS

Your team is designing a probe to investigate space near Jupiter. One device uses strong permanent magnets to track the motion of charged particles through Jupiter’s magnetic field. You worry that their magnetic fields could damage computers on the probe. To estimate how close a magnet can be to a computer without causing damage, you have been asked to determine the magnitude of the field near the magnet.

No isolated magnetic monopoles have ever been discovered (a difference between magnetism and electricity) but you wonder how accurately one could mathematically model the field of a bar magnet as the vector sum of fields produced by monopoles located near each end of the magnet. With this model, you calculate how the magnetic field would vary with distance along each symmetry axis of a bar magnet. You assume that a magnetic monopole would produce a magnetic field similar to the electric field produced by a point charge. To test your model, you decide to measure the magnetic field near a bar magnet with a Hall probe.

EQUIPMENT

You will have a bar magnet, a meter stick, a Hall probe (see Appendix D), and a computer data acquisition system (see Appendix E). You will also have a Taconite plate and a compass.

PREDICTION

Restate the problem. What are you trying to calculate? What assumptions are you making?

WARM-UP QUESTIONS

Review your notes from Lab I problem 2, “Electric Field from a Dipole”

1. Draw a bar magnet as a magnetic dipole consisting of two magnetic monopoles of equal strength but opposite sign, separated by some distance. Label each monopole with its strength and sign, using the symbol “g” to represent the strength of the monopole. Label the distance. Choose a convenient coordinate system.

2. Select a point along one of the coordinate axes, outside the magnet, at which you will calculate the magnetic field. Determine the position of that point with respect to your coordinate system. Determine the distance of your point to each pole of the magnet, in terms of the position of your point with respect to your coordinate system.

3. Assume that the magnetic field from a magnetic monopole is analogous to the electric field from a point charge, i.e. the magnetic field is proportional to \(\frac{g}{r^2} \), where \(g \) is a measure of
PROBLEM #3: MEASURING THE MAGNETIC FIELD OF PERMANENT MAGNETS

the strength of the monopole. (What are the dimensions of this “g”?) Determine the direction of the magnetic field from each pole at the point of interest.

4. Calculate the magnitude of each component of the magnetic field from each pole at the point of interest. Add the magnetic field (remember it is a vector) from each pole at that point to get the magnetic field at that point.

5. Graph your resulting equation for magnetic field strength along that axis as a function of position along the axis.

6. Repeat the above steps for the other axis.

EXPLORATION

Using either a Taconite plate or a compass check that the magnetic field of the bar magnet appears to be a dipole.

Start the Hall probe program and go through the Hall probe calibration procedure outlined in Appendix E. Be sure the switch on your amplification box agrees with the value on the computer.

Take one of the bar magnets and use the probe to check out the variation of the magnetic field. Based on your previous determination of the magnetic field map, be sure to orient the Hall probe correctly. Where is the field the strongest? The weakest? How far away from the bar magnet can you still measure the field with the probe?

Write down a measurement plan.

MEASUREMENT

Based on your exploration, choose a scale for your graph of magnetic field strength against position that will include all of the points you will measure.

Choose an axis of the bar magnet and take measurements of the magnetic field strength in a straight line along the axis of the magnet. Be sure that the field is always perpendicular to the probe. Make sure a point appears on the graph of magnetic field strength versus position every time you enter a data point. Use this graph to determine where you should take your next data point to map out the function in the most efficient manner.

Repeat for each axis of the magnet.

ANALYSIS

Compare the graph of your calculated magnetic field to that which you measured for each axis of symmetry of your bar magnet. Can you fit your prediction equation to your measurements by adjusting the constants?
Along which axis of the bar magnet does the magnetic field fall off faster? Did your measured graph agree with your predicted graph? If not, why? State your results in the most general terms supported by your analysis.

How does the shape of the graph of magnetic field strength versus distance compare to the shape of the graph of electric field strength versus distance, for an electric dipole along each axis? Is it reasonable to assume that the functional form of the magnetic field of a monopole is the same as that of an electric charge? Explain your reasoning.
PROBLEM #4
THE MAGNETIC FIELD OF ONE COIL

You are working with a group researching new techniques to miniaturize the read-write head (the device in hard drives that reads and writes data to the disk). You suggest that a permanent magnet in the head could be replaced with a loop of wire to control the strength of the magnetic field. You read in your physics text that a coil of wire carrying a current gives the same magnetic field as a bar magnet: a magnetic dipole field. Your partners doubt that this is the case, so you decide to check it using a large coil of wire and a Hall probe, as well as a simulation. You decide to measure the strength of the magnetic field as a function of position along the central axis of the coil and compare it to the measurements you have for a bar magnet. As a qualitative check you also use the Hall probe to make a map of the magnetic field everywhere near the current carrying coil, and compare that to what the simulation predicts.

EQUIPMENT

You will have a coil of 150 turns of wire, a power supply, a compass, a meter stick, a digital multimeter (DMM), a Hall probe, and a computer data acquisition system. You will also have the EMField application.

PREDICTION

Sketch the magnetic field around a current-carrying coil of wire and compare to the magnetic field around a bar magnet.

WARM-UP QUESTIONS

If you have done Problem #3, you already have the equation that describes the magnetic field strength of a magnetic dipole along an axis of symmetry. If not, answer the method questions in Problem #3.

Draw the coil and label the current through it.

Using the right hand rule, determine the direction of the magnetic field along the central axis of the coil. Using this information, which symmetry axis of a magnetic dipole corresponds to this central axis?
PROBLEM #4: THE MAGNETIC FIELD OF ONE COIL

EXPLORATION

First, see what the simulation gives you. If you do not remember how to use EMField, review labs 1, 2, and the second problem of this lab.

Once you are in the 2D Line Currents mode, you will need to figure out how to model a coil. You should think of the fact that a coil and its field are symmetric about the coil’s central axis and the simulation plots fields in a plane perpendicular to the current flow. Once you have your model of a simple coil input into the program, use the Field Vectors option in the Field and Potential menu to study the field. You should pick points both inside and outside the coil for a complete map of the magnetic field. Once you have done this, print it out, using Print under File. **Note that you will use this for qualitative comparisons only!**

Now you should start working with the physical apparatus.

WARNING: You will be working with equipment that generates large electric voltages. Improper use can cause painful burns. **To avoid danger, the power should be turned OFF and you should WAIT at least one minute before any wires are disconnected from or connected to the power supply. NEVER GRASP A WIRE BY ITS METAL ENDS!**

Connect a large coil to the power supply using the adjustable voltage. Using your compass, make a qualitative map of the magnetic field produced. To get the most obvious effect on the compass, should the central axis of the coil be oriented N-S or E-W?

Using your compass an indicator, adjust the current up and down to determine the sensitivity of the magnetic field to the current. For a reasonable current in the coil, use the compass to determine how far a measurable magnetic field along the axis of the coil extends. Also check out the magnetic field outside the coil. Is it large or small? Compared to what?

Try reversing the current through the coil. What happens to the magnetic field at each point? Connect the Hall probe according to the directions in Appendices D and E. Explore the strength of the magnetic field in the plane of the coil. Is the field stronger inside or outside the coil? Where is the field the strongest inside the coil? Decide whether you should set the amplifier to high or low sensitivity.

How far from the center of the coil along the axis can you measure the field? Is it the same on both sides of the coil? How can you tell by your magnetic field reading if you are on the axis? How far from the axis can you move the Hall probe without introducing additional uncertainty to your measurement? Write down a measurement plan.

MEASUREMENT

Based on your exploration, choose a scale for your graph of magnetic field strength as a function of position that will include all of the points that you will measure.
Use the Hall probe to measure the magnitude and direction of the magnetic field as a function of position along the axis of the coil. Measure the field on both sides of the coil. Be sure your Hall Probe is calibrated and has the correct orientation to accurately measure the magnetic field.

Use the Hall probe to complete the field map for the coil.

Use the DMM to measure the current in the coil. Try measuring the field along the axis at several different currents.

Don't forget to measure the diameter of the coil and record the number of turns. What considerations need to be made when measuring the diameter?

Analysis

Graph the magnetic field of the coil along its axis as a function of position and compare to the magnetic field of the bar magnet along the comparable axis. The graphical comparison is easier if you normalize the function describing the bar magnet’s magnetic field to that of the coil. You can do this by dividing the largest magnetic field strength of the coil by the largest magnetic field strength of the bar magnet. Use the resulting number to multiply the function representing the bar magnet’s magnetic field strength. You may also need to use the same process on the x-values. You can then put both functions on the same graph.

Conclusion

Is the graph of magnetic field strength as a function of position along the central axis similar to that for a bar magnet? Does the magnetic field map for a current-carrying coil have the same pattern as for a bar magnet? Do you believe that this coil gives a magnetic dipole field? Is this true everywhere? Why or why not?

How does the magnetic field strength of a current-carrying coil depend on the current? What measurements justify your statement?
PROBLEM #5
DETERMINING THE MAGNETIC FIELD OF A COIL

You have a job in a microelectronics laboratory and need to shape a silicon wafer with a precision of a few microns. Your team decides to investigate using an ion beam to do this accurate cutting. You know that an ion is just an atom with some of its electrons stripped off, so you could direct it with a magnetic field. One of the members of your group suggests that a coil of wire can be used to produce a variable magnetic field. You have been assigned to calculate the magnetic field along the axis of the coil as a function of its current, number of turns, radius, and the distance along the axis from the center of the coil. To make sure you are correct, you decide to compare your calculation to measurements.

EQUIPMENT

If you have done Problem #4, you can use those measurements for this Problem. If not, you will use the following equipment.

You will have a large, 150 turn coil of wire, a power supply, a digital Multimeter (DMM), a compass, a meter stick, a Hall probe, and a computer data acquisition system.

PREDICTION

Restate the problem. What are you trying to calculate? Express the result in the form of an equation and a graph with respect to distance along the axis.

WARM-UP QUESTIONS

Read: Fishbane Chapter 29 Section 4.

1. Make a sketch of a coil of radius R. Define a coordinate axis, label the relevant quantities, and indicate the direction of the current through the coil.
 Select a point along the axis at which you will calculate the magnetic field.

2. Select a small element of current along the coil, which will cause a small fraction of this magnetic field. Label the length of that current element. Draw a position vector from that current element to the selected point along the axis of the coil.
Use the Biot-Savart law to draw a vector representing the direction of the small part of the magnetic field from your current element at the position of interest. Determine the components of this vector along the axes of your coordinate system. Are there any symmetries that rule out one or more components of the magnetic field at the point of interest?

3. Use the Biot-Savart law to calculate the small part of the desired component of the magnetic field, at the selected point, from the small element of current. Now add up (using an integral) all of the small fractions of that component of the magnetic field from all of the small elements of current around the coil.

Determine the magnitude of the magnetic field at that point along the axis for one loop of wire, writing your answer as a function of the distance along the axis of the coil. What will be the effect of \(N \) identical loops on the magnitude of the magnetic field?

4. Graph the magnitude of magnetic field strength as a function of the position along the central axis of the coil of wire.

EXPLORATION

If you have the data from Problem #4 you do not need to make any additional measurements. Go directly to the analysis section. If you have not done Problem #4, continue with the exploration.

WARNING: You will be working with equipment that generates large electric voltages. Improper use can cause painful burns. To avoid danger, the power should be turned OFF and you should WAIT at least one minute before any wires are disconnected from or connected to the power supply. NEVER GRASP A WIRE BY ITS METAL ENDS!

Connect a large coil to the power supply using the adjustable voltage. Using your compass, make a qualitative map of the magnetic field produced. To get the most obvious effect on the compass, should the central axis of the coil be oriented N-S or E-W? Decide whether you should set the amplifier to high or low sensitivity.

Using your compass as an indicator, adjust the current up and down to determine the sensitivity of the magnetic field to the current. For a reasonable current in the coil, use the compass to determine how far a measurable magnetic field along the axis of the coil extends. Also check out the magnetic field outside the coil. Is it large or small? Compared to what?

Try reversing the current through the coil. What happens to the magnetic field at each point?

Connect the Hall probe according to the directions in Appendices D and E. Explore the strength of the magnetic field in the plane of the coil. Is the field stronger inside or outside the coil? Where is the field the strongest inside the coil?

How far from the center of the coil along the axis can you measure the field? Is it the same on both sides of the coil?

How can you tell by your magnetic field reading if you are on the axis? How far from the axis can you move the Hall probe without introducing additional uncertainty to your measurement? Write down a measurement plan.
MEASUREMENT

Based on your exploration, choose a scale for your graph of magnetic field strength against position that will include all of the points you will measure.

Use the Hall probe to measure the magnitude and direction of the magnetic field as a function of position along the axis of the coil. Measure the field on both sides of the coil. Be sure your Hall probe is calibrated and has the correct orientation to accurately measure the magnetic field. Make sure you take at least two measurements for averaging.

Use the Hall probe to complete the field map for the coil.

Use the DMM to measure the current in the coil. Try measuring the field along the axis at several different currents.

Don't forget to measure the diameter of the coil and record the number of turns. What considerations need to be made when measuring the diameter?

ANALYSIS

Graph the measured magnetic field of the coil along its axis as a function of position and compare with your prediction.

CONCLUSION

Does the graph of magnetic field strength as a function of distance agree with your prediction? Is this true everywhere? Why or why not?
PROBLEM #6
MEASURING THE MAGNETIC FIELD OF TWO PARALLEL COILS

You have a part time job working in a laboratory developing large liquid crystal displays that could be used for very thin TV screens and computer monitors. The alignment of the liquid crystals is very sensitive to magnetic fields. It is important that the material sample be in a fairly uniform magnetic field for some crystal alignment tests. The laboratory has two nearly identical large coils of wire mounted so that the distance between them equals their radii. You have been asked to determine the magnetic field between them to see if it is suitable for the test. You decide to make a graph of the field strength along the axis of the coils.

Equipment

Connect two large coils to a power supply so that each coil has the same current. Each coil has 150 turns.

You will have a digital Multimeter (DMM), a compass, a meter stick, and a Hall probe. A computer is used for data acquisition.

Prediction

Restate the problem. Express the results in the form of an equation and a graph.

Warm-up Questions

Read: Fishbane Chapter 29 Section 4.

1. Draw a picture of the situation showing the direction of the current through each coil of wire. Establish a single convenient coordinate system for both coils.

 Label all of the relevant quantities.

2. Select a point along the axis of the two coils at which you will determine an equation for the magnetic field. In the previous problem, you calculated the magnetic field of one coil as a function of the position along its axis. To solve this problem, add the magnetic field from each coil at the selected point along the axis. Remember to pay attention to the geometry of your drawing. The origin of your coordinate system for this problem cannot be at the center of both coils at once. Also remember that the magnetic field is a vector.
3. Use your equation to graph the magnetic field strength as a function of position from the common origin along the central axis of the coils. Describe the qualitative behavior of the magnetic field between the two coils. What about the region outside the coils?

EXPLORATION

WARNING: You will be working with a power supply that can generate large electric voltages. Improper use can cause painful burns. To avoid danger, the power should be turned OFF and you should WAIT at least one minute before any wires are disconnected from or connected to the power supply. NEVER GRASP A WIRE BY ITS METAL ENDS!

Connect the large coils to the power supply with the current flowing in opposite directions in the two coils, using the adjustable voltage. With the compass, explore the magnetic field produced. Be sure to look both between the coils and outside the coils.

Now connect the large coils to the power supply with the current flowing in the same direction in each coil, using the adjustable voltage. With the compass, explore the magnetic field produced. Be sure to look both between the coils and outside the coils.

Based on your observations, should the currents be in the same direction or in opposite directions to give the most uniform magnetic field between the coils?

Connect the Hall probe according to the directions in Appendices D and E. For the current configuration that gives the most uniform magnetic field between the coils, explore the strength of the magnetic field along the axis between the coils. Follow the axis through the coils. Is the field stronger between or outside the coils? Where is the field strongest between the coils? The weakest?

See how the field varies when you are between the two coils but move off the axis. How far from the axis of the coils can you measure the field? Is it the same on both sides of the coils? Decide whether to set the amplifier to high or low sensitivity.

When using the Hall probe program, consider where the zero position should be to simplify comparison with your prediction. Write down a measurement plan.

MEASUREMENT

Based on your exploration, choose a scale for your graph of magnetic field strength against position that will include all of the points you will measure.

With the Hall probe, measure the magnitude of the magnetic field along the axis of the coils. Measure the field on both sides of the coils. What are the units of your measured magnetic fields? Do they match those in your prediction equations?

Use the DMM to measure the current in the two coils. As a check, repeat these measurements with the other current configuration.
PROBLEM #6: MEASURING THE MAGNETIC FIELD OF TWO PARALLEL COILS

Analysis

Graph the measured magnetic field of the coil along its axis as a function of position and compare to your prediction.

Conclusion

For two large, parallel coils, how does the magnetic field on the axis vary with distance along the axis? Did your measurements agree with your predictions? If not, explain? Describe the limitations on the accuracy of your measurements and analysis.

Does this two-coil configuration meet the requirement of giving a fairly uniform field? Over how large a region is the field constant to within 20%? This very useful configuration of two coils (distance between coils equals radius) is called a Helmholtz coil.
PROBLEM #7: MAGNETS AND MOVING CHARGE

You are leading a technical team at a company that is redesigning the cathode ray tubes (CRT’s) used for computer monitors. To introduce this project to a group of stockholders, you need to demonstrate how an electron beam can be moved across a screen by a magnetic field. You decide to use an ordinary bar magnet held outside of the CRT to deflect the electrons. Before you do the demonstration, you need to know the qualitative effect of bringing a bar magnet up to a CRT. In the laboratory you qualitatively determine how the direction and size of the electron deflection is related to the magnetic field direction, the magnetic field strength, and the velocity of the electron. You also determine how the deflection is affected by how close the magnet is held to the CRT.

Equipment

For this problem you will need a cathode ray tube (CRT) and accessories, a bar magnet, a meter stick, and a compass. Review the information from Laboratory I and Appendix D regarding the design of the CRT and the proper way to use it.

Prediction

Restate the problem. What are you trying to predict? Make sure to describe the qualitative effects of each variable mentioned in the problem. Use a diagram like the one below to help make your prediction.

Exploration

WARNING: You will be working with equipment that generates large electric voltages. Improper use can cause painful burns. **To avoid danger, the power should be turned OFF and you should WAIT at least one minute before any wires are disconnected from or connected to the power supply. Never grasp a wire by its metal ends.**

Connect the CRT according to the directions in Appendix D and your lab journal from Lab I. Select the accelerating voltage that gave the largest deflection for the smallest electric field based on your explorations from Lab I. Record the location of the undeflected beam spot.
Determine which pole on your bar magnet is the north magnetic pole. Make a qualitative field map of your magnet to make sure it is a simple dipole. If it is not, ask your instructor to replace it. Describe the magnetic field at the end of the magnet.

Place the magnet near the side of the CRT. Did the deflection match your prediction? Why or why not? Repeat this procedure for the south pole. Should there be any difference? In which direction did the beam spot deflect?

Put the bar magnet perpendicular to the screen of the CRT, do you see a deflection? Try this with both poles of the magnet. Record your results. Were they what you had expected? Can you orient the bar magnet so that it attracts or repels the electron beam?

Place the north pole of your magnet a fixed distance away from the side of the CRT near the screen. Record the deflection. Increase the speed of the electrons by increasing the accelerating voltage as much as possible. Calculate the increase in speed. How does the deflection change? Try this with both poles of the magnet. Record your results. Were your results what you had anticipated?

Place the north pole of your magnet a fixed distance away from the side of the CRT near the screen. Record the deflection. Increase the magnetic field by adding more magnets. How does the deflection change? Try this with both poles of the magnet. Record your results. Were your results what you had anticipated?

What effect does the Earth’s magnetic field have on the electron beam of a CRT? What is the direction of the Earth’s magnetic field in your laboratory room? Arrange the CRT to see the maximum effect. Arrange it to observe the minimum effect. By measuring the electron deflection, what would you say is the relative strength of the magnet and the Earth’s magnetic field in the lab? Remember to take account of the distance that the electron travels through each magnetic field. What is the effect of the Earth’s magnetic field on the CRT beam relative to the Earth’s gravitational field? How did this affect your results from Lab 1, Problem #5?

Devise your own exploration of the effect of a magnetic field on electrons using the CRT and the bar magnets. What variables can you control with the magnets and the CRT? Record your questions that will guide your exploration and check it with your lab instructor for safety before starting.

ANALYSIS

Draw a picture relating the three vectors representing the velocity of the electron, the magnetic field, and the force on the electron that is consistent with your results.

CONCLUSION

Did the electron beam deflection, in the presence of a magnetic field, agree with your prediction? Why or why not? What was the most interesting thing you learned from this exploration?
PROBLEM #8
MAGNETIC FORCE ON A MOVING CHARGE

You are working with a team to design a better electron microscope. To precisely control the beam of electrons, your research team decides to try a magnetic field. For your study of electron control you decide to use a Cathode Ray Tube (CRT) with a magnetic field perpendicular to its axis. From your work with Helmholtz coils in Problem #5, you know that the magnetic field between these parallel coils is fairly uniform, so you decide to use them for your test. Before you can evaluate the sensitivity of the electron microscope design, you need to determine how the magnitude of a constant magnetic field affects the position of the beam spot.

Equipment

You will be using the cathode ray tube (CRT) described in Appendix D. The magnetic field will be provided by connecting the Helmholtz coils to the power supply and placing the CRT between the coils. You will also have a digital multimeter (DMM), a compass, a meter stick, and a Hall probe connected to a computer data acquisition system.

Prediction

Restate the problem. What are you trying to calculate? What variable(s) can you control in the lab? What variables will be fixed for you? Express results in the form of an equation and a graph.

Warm-up Questions

Read: Fishbane Chapter 28 Sections 2 and 3.

1. Draw a picture of the CRT in the Helmholtz coils. Since you will not be using electric fields, do not include the deflection plates in your sketch. Be sure you have all the other components in your sketch. Draw a coordinate axis on this sketch and show the magnetic field direction and the region occupied by the magnetic field. Draw the electron trajectory through all regions of the CRT together with its velocity and acceleration. Draw the electron trajectory if there were no magnetic field. The difference between where these two trajectories hit the CRT screen is the deflection.

2. What path does an electron follow while traveling through a constant magnetic field? The magnetic force is always perpendicular to the electron's velocity. Are there any forces other than the magnetic force that need to be considered?

3. Determine the velocity of the electrons as they leave the electron gun in the CRT. (See your notes from Lab 1, Problem #5 or the Method Questions from that problem.)

4. Determine the position, direction, and velocity of an electron entering the region of constant magnetic field. Determine the position, direction, and velocity of an electron as it leaves the
region of constant magnetic field. What type of curve is the electron’s trajectory in that region?

5. Determine the path of the electron as it travels after it leaves the magnetic field region until it strikes the screen. Use geometry to determine how far from the center the electron strikes the screen.

EXPLORATION

Review your notes from your exploration in Problem #7.

WARNING: You will be working with equipment that generates large electric voltages. Improper use can cause painful burns. To avoid danger, the power should be turned OFF and you should WAIT at least one minute before any wires are disconnected from or connected to the power supply. Never touch the conducting metal of any wire.

Check to see that the connections from the power supply to the high voltage accelerating plates and the filament heater of the CRT are correct, then turn the power supply on. You should have between 250 and 500 volts between the cathode and anode. After a moment, you should see a spot that you can adjust with the knob labeled “Focus”. If your connections are correct and the spot still does not appear, inform your lab instructor.

Devise a measuring scheme to record the position of the beam spot. Record your zero deflection position and do not move the CRT once you have started taking measurements.

Review the magnetic field map from the Helmholtz Coils. How will you orient the CRT with respect to the coils? Would the deflection be the same if the magnetic field were reversed? Try it. How will you determine the length of the CRT within the magnetic field? Is the field uniform throughout the flight of the electrons? Write down a measurement plan.

MEASUREMENT

Measure the position of the beam spot as you change the magnetic field. Make at least two measurements for averaging. Measure the magnetic field between the Helmholtz coils, using the Hall probe.

ANALYSIS

Graph your measurements of the deflection of the electron beam for the different values of the magnetic field at a fixed electron speed and compare to your prediction.

Repeat for deflection as a function of electron speed for a fixed magnetic field.
How does the deflection of the electron beam depend on the magnetic field? Did your data agree with your prediction? If not, why? What are the limitations on the accuracy of your measurements and analysis?

How does the deflection of the electron beam depend on the electron speed? Did your data agree with your prediction? If not, why? What are the limitations on the accuracy of your measurements and analysis?

Is controlling the deflection of an electron beam easier with a magnetic field or an electric field? Write down what you mean by easier.
1. For each of the configurations of magnets below, sketch the magnetic field map. Assume that the figures do not interact with each other.

![Magnet Configurations](image)

2. You and your friends are watching an old Godzilla movie. In one scene, a scientist broke a magnet in half because he needed a monopole for his experiment. You cringe and start laughing, but your friends don't understand what you found so funny. Explain the joke.

3. For a cathode ray tube (CRT) with the same electron gun as you used in lab, assume that the distance from the center of the V_x plate to the fluorescent screen is 10 cm, V_{acc} is 500V and $V_x = 6$V. The CRT is then placed between the large parallel coils (also used in this lab) which have a current of 1 ampere flowing through them. Assume that the CRT is oriented in the large parallel coils such that the electric field between the V_x plates and the magnetic field are in the same direction. What is the displacement of the electron beam on the screen? This is a difficult problem!!
PHYSICS 1302 LABORATORY REPORT

Laboratory V

Name and ID #: ___

Date performed: _______________ Day/ Time section meets: __________________________

Lab Partners’ Names: __

Problem # and Title: ___

Lab Instructor’s Initials: ___________

Grading Checklist

<table>
<thead>
<tr>
<th>LABORATORY JOURNAL:</th>
<th>Points*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREDICTIONS</td>
<td></td>
</tr>
<tr>
<td>(individual predictions and warm-up questions completed in journal before each lab session)</td>
<td></td>
</tr>
<tr>
<td>LAB PROCEDURE</td>
<td></td>
</tr>
<tr>
<td>(measurement plan recorded in journal, tables and graphs made in journal as data is collected, observations written in journal)</td>
<td></td>
</tr>
</tbody>
</table>

PROBLEM REPORT:

<table>
<thead>
<tr>
<th>ORGANIZATION</th>
<th>Points*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(clear and readable; logical progression from problem statement through conclusions; pictures provided where necessary; correct grammar and spelling; section headings provided; physics stated correctly)</td>
<td></td>
</tr>
<tr>
<td>DATA AND DATA TABLES</td>
<td>Points*</td>
</tr>
<tr>
<td>(clear and readable; units and assigned uncertainties clearly stated)</td>
<td></td>
</tr>
<tr>
<td>RESULTS</td>
<td>Points*</td>
</tr>
<tr>
<td>(results clearly indicated; correct, logical, and well-organized calculations with uncertainties indicated; scales, labels and uncertainties on graphs; physics stated correctly)</td>
<td></td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>Points*</td>
</tr>
<tr>
<td>(comparison to prediction & theory discussed with physics stated correctly; possible sources of uncertainties identified; attention called to experimental problems)</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: Incorrect or missing statement of physics will result in a maximum of 60% of the total points achieved; incorrect grammar or spelling will result in a maximum of 70% of the total points achieved.

BONUS POINTS FOR TEAMWORK

(as specified by course policy)

* An "R" in the points column means to rewrite that section only and return it to your lab instructor within two days of the return of the report to you.