## TABLE OF CONTENTS

### Laboratory V: Magnetic Fields and Forces
- **Problem #1:** Permanent Magnets
- **Problem #2:** Current Carrying Wire
- **Problem #3:** Measuring the Magnetic Field of Permanent Magnets
- **Problem #4:** Measuring the Magnetic Field of One Coil
- **Problem #5:** Determining the Magnetic Field of a Coil
- **Problem #6:** Measuring the Magnetic Field of Two Parallel Coils
- **Problem #7:** Magnets and Moving Charge
- **Problem #8:** Magnetic Force on a Moving Charge
- **Check Your Understanding**
- **Laboratory V Cover Sheet**

### Laboratory VI: Electricity from Magnetism
- **Exploratory Problem #1:** Magnetic Induction
- **Problem #2:** Magnetic Flux
- **Problem #3:** The Sign of the Induced Potential Difference
- **Problem #4:** The Magnitude of the Induced Potential Difference
- **Problem #5:** The Generator
- **Problem #6:** Time-Varying Magnetic Fields
- **Check Your Understanding**
- **Laboratory VI Cover Sheet**

### Appendices
- **Appendix A:** Significant Figures
- **Appendix B:** Accuracy, Precision, and Uncertainty
- **Appendix C:** Graphing
- **Appendix D:** Equipment
- **Appendix E:** Software
- **Appendix F:** A Brief Introduction to Root Mean Square Measurements
- **Appendix G:** Sample Laboratory Report
Acknowledgments

Much of the work to develop this problem solving laboratory was supported by the University of Minnesota and the National Science Foundation. We would like to thank all the people who have contributed directly to the development of this laboratory manual:

Yves Adjallah  Heather Brown  Jennifer Docktor
Andy Ferstl  Tom Foster  Matthew Fritts
Kimia Ghanbeigi  Charles Henderson  Ted Hodapp
Alexey Kobrinskii  Andrew Kunz  Vince Kuo
Laura McCullough  Michael Myhrom  Jeremy Paschke
Leon Steed  Alexander Scott  Tom Thaden-Koch

And all of the faculty and graduate students who helped to find the 'bugs' in these instructions.

Kenneth & Patricia Heller

© Kenneth Heller & Patricia Heller