TABLE OF CONTENTS

Introduction	INTRO - 1
Laboratory 0: Determining an Equation from a Graph	0 - 1
Laboratory I: Description of Motion in One Dimension	I - 1
Problem #1: Constant Velocity Motion	I - 3
Problem #2: Motion Down an Incline	I - 9
Problem #3: Motion Up and Down an Incline	I - 13
Problem #4: Motion Down an Incline With an Initial Velocity	I - 17
Problem #5: Mass and Motion Down an Incline	I - 20
Problem #6: Motion on a Level Surface With an Elastic Cord	I - 23
Check Your Understanding	I - 26
Laboratory I Cover Sheet	I - 29
Laboratory II: Description of Motion in Two Dimensions	II - 1
Problem #1: Mass and the Acceleration of a Falling Ball	II - 2
Problem #2: Acceleration of a Ball with an Initial Velocity	II - 6
Problem #3: Projectile Motion and Velocity	II - 10
Problem #4: Bouncing	II - 14
Problem #5: Acceleration and Circular Motion	II - 18
Problem #6: A Vector Approach to Circular Motion	II - 21
Problem #7: Acceleration and Orbits	II - 23
Check Your Understanding	II - 25
Laboratory II Cover Sheet	II - 27
Laboratory III: Forces	III - 1
Problem #1: Force and Motion	III - 2
Problem #2: Forces in Equilibrium	III - 6
Problem #3: Frictional Force	III - 9
Problem #4: Normal and Kinetic Frictional Force I	III - 12
Problem #5: Normal and Kinetic Frictional Force II	III - 15
Table of Coefficients of Friction	III - 18
Check Your Understanding	III - 19
Laboratory III Cover Sheet	III - 21
Laboratory IV: Conservation of Energy	IV - 1
Problem #1: Kinetic Energy and Work I	IV - 2
Problem #2: Kinetic Energy and Work II	IV - 5
Problem #3: Energy and Collisions When Objects Stick Together	IV - 7
Problem #4: Energy and Collisions When Objects Bounce Apart	IV - 10
Problem #5: Energy and Friction	IV - 13
Check Your Understanding	IV - 15
Laboratory IV Cover Sheet	IV - 17

TABLE OF CONTENTS

Laboratory V: Conservation of Energy and Momentum	V - 1
Problem #1: Perfectly Inelastic Collisions	V - 2
Problem #2: Elastic Collisions	V - 5
Check Your Understanding	V - 8
Laboratory V Cover Sheet	V - 11
Laboratory VI: Rotational Kinematics	VI - 1
Problem #1: Angular Speed and Linear Speed	VI - 2
Problem #2: Rotation and Linear Motion at Constant Speed	VI - 5
Problem #3: Angular and Linear Acceleration	VI - 8
Check Your Understanding	VI - 12
Laboratory VI Cover Sheet	VI - 15
Laboratory VII: Rotational Dynamics	VII - 1
Problem #1: Moment of Inertia of a Complex System	VII - 2
Problem #2: Moment of Inertia About Different Axes	VII - 6
Problem #3: Moment of Inertia With an Off-Axis Ring	VII - 10
Problem #4: Forces, Torques, and Energy	VII - 14
Problem #5: Conservation of Angular Momentum	VII - 17
Problem #6: Designing a Mobile	VII - 20
Problem #7: Equilibrium	VII - 23
Check Your Understanding	VII - 26
Laboratory VII Cover Sheet	VII - 29
Laboratory VIII: Mechanical Oscillations	VIII - 1
Problem #1: Measuring Spring Constants	VIII - 2
Problem #2: The Effective Spring Constant	VIII - 5
Problem #3: Oscillation Frequency with Two Springs	VIII - 8
Problem #4: Oscillation Frequency of an Extended System	VIII - 11
Problem #5: Driven Oscillations	VIII - 14
Check Your Understanding	VIII - 16
Laboratory VIII Cover Sheet	VIII - 19
Appendix A: Significant Figures	A - 1
Appendix B: Accuracy, Precision, and Uncertainty	B - 1
Appendix C: Graphing	C - 1
Appendix D: Video Analysis of Motion	D - 1
Appendix E: Sample Laboratory Reports	E - 1
Appendix F: Simulation Programs	F - 1

Acknowledgments

Much of the work to develop this problem solving laboratory was supported by the University of Minnesota and the National Science Foundation. We would like to thank all the people who have contributed directly to the development of this laboratory manual:

Sean Albiston Andy Ferstl Charles Henderson Andrew Kunz Laura McCullough Jeremy Paschke Hao Wang Heather Brown Tom Foster Ted Hodapp Vince Kuo Michael Myhrom Leon Steed

Jennifer Docktor Kaiyan Gao Tao Hu Roman Lutchyn Maribel Núñez V. Tom Thaden-Koch

And all of the faculty and graduate students who helped to find the 'bugs' in these instructions.

Kenneth & Patricia Heller

© Kenneth Heller & Patricia Heller