

The wave pattern repeats over a distance λ		
$\boldsymbol{\lambda}$ is called the wavelength		
If the wave takes a time $\boldsymbol{\tau}$		
to travel a distance λ		
au is called the period		
Its speed is $v = \lambda / \tau$		
$\lambda = v\tau$		

Example:

While watching a concert you wonder about the physics of playing a violin. One of the violin strings sounds an A note (440 Hz) when played without fingering. The string is 30 cm long and has a mass of 2.0 g. Where must one put one's finger to play a C note (528 Hz) with the same string?

$d = \lambda_2/2$	need λ_2			
$\lambda_2 = v \tau_2$				
$\lambda_2 = v/f_2$				
$d = v/2f_2$	need v			
From string without fingering				
$\lambda_1 = v/f_1$				
$\lambda_1 f_1 = v$				
$d = \lambda_1 f_1 / 2 f_2$	need λ_1			
$L = \lambda_1/2$				
$d = Lf_1/f_2$				
d = (30 cm) (440 Hz)/(528 Hz)				
d - 25 cm				
u = 20 cm				
Units are correct for a length				
Finger position is reasonable, it is less than the length of the string.				

At t=0, your friend claps hands, with 1.00 second between each clap. You are standing 550 ft away from your friend. The speed of sound in air is 1100 ft/s.

When do you hear the first clap?

What is the time interval you hear between the first clap and the second clap?

At t=0, your friend claps hands, with 1.00 second between each clap. You are 550 ft away from your friend and running away with a constant speed of 2 ft/s. The speed of sound in air is 1100 ft/s.

When do you hear the first clap?

What is the time interval you hear between the first clap and the second clap?

Find v _t	
$\lambda - v_t \tau = v \tau'$	need λ, τ, τ'
Find τ'	
$f' = \frac{1}{\tau'}$	
Find λ	
$\lambda = v\tau$	
Find r	
f = 1	
τ	
$\frac{v}{f} - \frac{v_t}{f} = \frac{v}{f}$	
$\frac{\mathbf{v}}{\mathbf{f}} - \frac{\mathbf{v}}{\mathbf{f}'} = \frac{\mathbf{v}_{\mathrm{t}}}{\mathbf{f}}$	
$v - v \frac{f}{f} = v_t$	
$v\left(1-\frac{f}{f}\right) = v_t$	check units

RECAP			
		$\lambda' = v_s \tau$	
Moving source		-	
Emitted	Observed		
v	v		
λ	$\lambda' < \lambda$ source t	oward receiver	
	λ' > λ source away from receiver		
	$\lambda' = \lambda - v_s \tau$	motion of s	
$\lambda = v\tau$	$\lambda' = v\tau'$	from wave	
λ f = v	λ' f' = v	equation	
Moving receiver			
Emitted	Observed		
v	v'		
v' > v receiver toward source			
	v' < v receiver a	away from source	
	v' = v +	v _r motion of r	
λ	λ		
$\lambda = v\tau$	$\lambda = v'\tau'$	from wave	
$\lambda f = v$	$\lambda f' = v'$	equation	

Both moving source and receiver For emitted wave $\lambda f = v$ For the wave you hear $\lambda' f' = v'$ moving receiver $v' = v - v_r$ Receiver moving in SAME direction as wave Know: f, v_s, v_r Know: f, v_s, v_r Find f' $\lambda' f' = v'$ need λ', v' $\left(\lambda - \frac{v_s}{f}\right) f' = (v - v_r)$ need λ $\lambda = v/f$ $\left(\lambda - \frac{v_s}{f}\right) f' = (v - v_r)$ $\left(v - v_s\right) \frac{f}{f} = (v - v_r)$ $\left[f' = f \frac{v - v_r}{(v - v_s)}\right]$