Waves Chap 16
An example of
Dynamics
Conservation of Energy
Conceptual starting point
Forces
Energy

The wave pattern repeats over a distance λ
λ is called the wavelength

If the wave takes a time τ
to travel a distance λ
τ is called the period
Its speed is $v=\lambda / \tau$
$\lambda=v \tau$

Wave velocity v Determined by properties of medium Restoring force Mass density
Wavelength λ
Distance of pulse repetition
Time for pulse repetition τ
For a wave
$\lambda=v \tau$
or
$f=1 / \tau$
$\lambda f=v$

Material is moving in oscillations "Spring" forces in material $F=-k \Delta x$
Velocity of material v_{t}
Perpendicular to wave motion
transverse wave
Parallel (and anti-parallel) to wave motion
longitudinal wave
Oscillating motion
Wave amplitude A
Maximum displacement of medium
Angular frequency $2 \pi f=\omega$

For a spring (oscillating system)
How does the wave speed depend on the
properties of the system (spring)?
Some "intuitive" reasoning which could be
wrong (check it with nature in the lab)
Frequency depends on
mass and spring constant
frequency $=\sqrt{\frac{k}{m}}$
frequency $=\sqrt{\frac{\text { restoring force strength }}{\text { mass term }}}$
For wave motion
Frequency is determined by wave velocity
$\lambda f=v$
It is reasonable that
wave velocity goes like

Wave phenomena
Determined by boundary conditions

An important example:
standing waves

Waves that seem to be
fixed in space

\(\left.\begin{array}{|l}\hline A standing wave is described by \\
y=f(x) g(t) \\
Time dependence of every position \\
of rope is the same. \\
Each point on rope is moving up and \\
down. Harmonic motion \\

Periodic in time\end{array}\right\}\)| Shape of wave is periodic. |
| :---: |
| Periodic in space |
| Try $\quad 0$ at $x=0, y=0$ at $x=L, y=0$ at nodes
 $y=A \sin (k x) \cos (\omega t)$
 $k=2 \pi / \lambda$
 $\omega=2 \pi / \tau$
 Where does $=0$
 When $x=n \lambda / 2$
 a node |

Example:
While watching a concert you wonder about
the physics of playing a violin. One of the
violin strings sounds an A note (440 Hz)
when played without fingering. The string
is 30 cm long and has a mass of 2.0 g .
Where must one put one's finger to play
a C note (528 Hz) with the same string?

| $d=\lambda_{2} / 2 \quad$ need λ_{2} |
| :--- | :--- |
| $\lambda_{2}=v \tau_{2}$ |
| $\lambda_{2}=v / f_{2}$ |
| $d=v / 2 f_{2} \quad$ need v |
| From string without fingering |
| $\lambda_{1}=v / f_{1}$ |
| $\lambda_{1} f_{1}=v$ |
| $d=\lambda_{1} f_{1} / 2 f_{2} \quad$ need λ_{1} |
| $L=\lambda_{1} / 2$ | | $d=L f_{1} / f_{2}$ |
| :--- |
| $d=(30 \mathrm{~cm})(440 \mathrm{~Hz}) /(528 \mathrm{~Hz})$ |
| $\mathrm{d}=25 \mathrm{~cm}$ |
| Units are correct for a length |
| Finger position is reasonable, |
| it is less than the length of the string. |

Example:
You are helping a friend design a high tech electric violin. She wants one steel string to vibrate at a frequency of 512 Hz in its lowest mode. The next string should be made of the mode. The next string should be made of
same material and have a lowest mode of 256 Hz . If the tensions of the two strings are different, they will warp the instrument. To decide on the thickness of the string, she ask You to calculate the ratio of the mass per unit length of the two strings so that they have the same tension.
What is the mechanism for getting
Standing Waves?
Shake one end of a rope and keep shaking it.
Get traveling waves

Hit end and reflect

Wave properties
Wave properties
$\lambda=v \tau \quad \tau=1 / \mathrm{f}$
$\lambda=v \tau \quad \tau=1 / \mathrm{f}$
$\mathrm{v}=\sqrt{\text { Tension }}$
$\mathrm{v}=\sqrt{\text { Tension }}$
$v=\sqrt{\text { mass density }}$
$v=\sqrt{\text { mass density }}$
$v=\sqrt{\frac{T}{\mu}}$
$v=\sqrt{\frac{T}{\mu}}$
For the two strings with the same tension
For the two strings with the same tension
$\mu_{1}=\frac{T}{v_{1}^{2}}$
$\mu_{1}=\frac{T}{v_{1}^{2}}$
$\mu_{2}=\frac{T}{v_{2}^{2}}$
$\mu_{2}=\frac{T}{v_{2}^{2}}$
$\frac{\mu_{2}}{\mu_{1}}=\frac{v_{1}^{2}}{v_{2}^{2}} \quad$ need v_{1}, v_{2}
$\frac{\mu_{2}}{\mu_{1}}=\frac{v_{1}^{2}}{v_{2}^{2}} \quad$ need v_{1}, v_{2}
$\frac{\mu_{2}}{}=\frac{(512 \mathrm{~Hz})^{2}}{(256 \mathrm{~Hz})^{2}}=\frac{(2 \times 256 \mathrm{~Hz})^{2}}{(256 \mathrm{~Hz})^{2}}=4$
$\frac{\mu_{2}}{\mu_{1}}=\frac{(256 \mathrm{~Hz})^{2}}{(256 \mathrm{~Hz})^{2}}$
Units are correct since a ratio has no units
The lower frequency string has a larger mass
so it vibrates slower at the same tension.

$\frac{\mu_{2}}{\mu_{1}}=\frac{v_{1}^{2}}{v_{2}^{2}}$
$\lambda=v_{1} \tau_{1}$
$\lambda / \tau_{1}=v_{1}$
$\lambda=v_{2} \tau_{2}$
$\lambda / \tau_{2}=v_{2}$

$\frac{\mu_{2}}{\mu_{1}}=\frac{\left(\frac{\lambda}{\tau_{1}}\right)^{2}}{\left(\frac{\lambda}{\tau_{2}}\right)^{2}}=\frac{\left(\frac{1}{\tau_{1}}\right)^{2}}{\left(\frac{1}{\tau_{2}}\right)^{2}}$

$\frac{\mu_{2}}{\mu_{1}}=\frac{f_{1}^{2}}{f_{2}^{2}}$
$\frac{\mu_{2}}{\mu_{1}}=\frac{(512 \mathrm{~Hz})^{2}}{(256 \mathrm{~Hz})^{2}}=\frac{(2 \times 256 \mathrm{~Hz})^{2}}{(256 \mathrm{~Hz})^{2}}=4$
Units are correct since a ratio has no units The lower frequency string has a larger mass so it vibrates slower at the same tension.

Example:

While trying to get home for spring break, you are driving down the freeway. On the sid of the road is a truck with a flat tire. Since the driver needs help, he sounds his air horn as you pass him. Your friend who is
riding with you has perfect pitch and claims the frequency that you both hear is 280 Hz . You wonder what the frequency of the truck's horn is. You know you are driving right at the speed limit of 65 mph . You remembe that the speed of sound is about $1100 \mathrm{ft} / \mathrm{s}$ which is 750 mph .

Both moving source and receiver
For emitted wave $\quad \lambda f=v$
For the wave you hear $\quad \lambda^{\prime} f^{\prime}=v^{\prime}$
moving source $\quad \lambda^{\prime}=\lambda-v_{s} \tau=\lambda-v_{s} / f$
Source moving in SAME direction as wave
moving receiver $\quad v^{\prime}=v-v_{r}$
Receiver moving in SAME direction as wave
Know: f, v_{s}, v_{r}
Find f^{\prime}
$\lambda^{\prime} f^{\prime}=v^{\prime}$
$\left(\lambda-\frac{v_{s}}{f}\right) f^{\prime}=\left(v-v_{r}\right) \quad$ need $\lambda^{\prime}, v^{\prime}$

$\lambda=v / f$

$\left(\lambda-\frac{v_{s}}{f}\right) f^{\prime}=\left(v-v_{r}\right)$
$\left(v-v_{s}\right) \frac{f^{\prime}}{f}=\left(v-v_{r}\right)$
$f^{\prime}=f \frac{v-v_{r}}{\left(v-v_{s}\right)}$

