Sample final answers - fall 2001
Here are my answers to the sample final. Please remember that I am only human and I do make mistakes. Please let me know if you think any of these answers are wrong.

Problems

1. $\mathrm{T}=\frac{2 \mathrm{~m}_{2}+\mathrm{M}(1-\mu)}{\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{M}} \mathrm{m}_{1} \mathrm{~g}$ where T is the force on the rope you want to find, M is the mass of the block on the table, m_{1} is the mass of the block you are interested in, m_{2} is the mass of the other block, μ is the coefficient of kinetic friction, and g is the gravitational acceleration.
$\mathrm{T}=\frac{2(20 \mathrm{~kg})+(30 \mathrm{~kg})(1-0.08)}{(12 \mathrm{~kg})+(20 \mathrm{~kg})+(30 \mathrm{~kg})}(12 \mathrm{~kg})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=1.3 \times 10^{2} \mathrm{~N}$
2. $\mathrm{T}_{1}=\frac{\mathrm{W}_{2} \mathrm{~d}_{2}+\mathrm{W} \frac{\mathrm{L}}{2}+\mathrm{W}_{1}\left(\mathrm{~L}-\mathrm{d}_{1}\right)}{\mathrm{L}}$ where T_{1} is the tension in the rope nearest the 115
lb worker, W_{1} is the weight of that worker, d_{1} is the distance of that worker from the end of the platform, W is the weight of the platform, L is its length, W_{2} is the weight of the other worker, and d_{2} is the distance of that worker from the end of the platform.
$T_{1}=\frac{(160 \mathrm{lb})(4.0 \mathrm{ft})+(130 \mathrm{lb}) \frac{(12 \mathrm{ft})}{2}+(115 \mathrm{lb})(12 \mathrm{ft}-2.5 \mathrm{ft})}{12 \mathrm{ft}}=209 \mathrm{lb}$
$T_{2}=\frac{\mathrm{W}_{1} \mathrm{~d}_{1}+W \frac{\mathrm{~L}}{2}+\mathrm{W}_{2}\left(\mathrm{~L}-\mathrm{d}_{2}\right)}{\mathrm{L}}=\frac{(115 \mathrm{lb})(2.5 \mathrm{ft})+(130 \mathrm{lb}) \frac{(12 \mathrm{ft})}{2}+(160 \mathrm{lb})(12 \mathrm{ft}-4.0 \mathrm{ft})}{12 \mathrm{ft}}=196 \mathrm{lb}$
3. $v_{f}=\frac{m}{m+M} v_{o}$ where v_{f} is the final velocity of the center of mass of the worker \& ring system, m is the mass of the worker, M is the mass of the ring, and v_{0} is the speed of the worker before grabbing the ring.
$\omega=\frac{m M}{m^{2}+m M+M^{2}} \frac{v_{0}}{r}$ where ω is the final angular speed of the worker \& ring system and r is the radius of the ring.
4. $v_{j}=\sqrt{2 g L}$ where v_{j} is the speed that the jumping cat hits the ground, L is the length of the ladder, and g is the gravitational acceleration.
$\mathrm{v}_{\mathrm{j}}=\sqrt{2\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(4.0 \mathrm{~m})}=8.9 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{h}=\sqrt{2 g L \frac{m+\frac{M}{2}}{m+\frac{M}{3}}}=v_{f} \sqrt{\frac{m+\frac{M}{2}}{m+\frac{M}{3}}}$ where v_{h} is the speed that the cat that hangs on hits
the ground, m is the mass of the cat, and M is the mass of the ladder.
$\mathrm{v}_{\mathrm{h}}=8.9 \frac{\mathrm{~m}}{\mathrm{~s}} \sqrt{\frac{(5.0 \mathrm{~kg})+\frac{(15 \mathrm{~kg})}{2}}{(5.0 \mathrm{~kg})+\frac{(15 \mathrm{~kg})}{3}}}=10 \frac{\mathrm{~m}}{\mathrm{~s}}$ The cat is better off jumping.
5. $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}_{1}+\mathrm{k}_{2}}{\mathrm{~m}+\mathrm{M}}}$ where f is the frequency after the additional mass is added.
$\mathrm{v}_{\text {max }}=\frac{1}{\mathrm{~m}+\mathrm{M}} \sqrt{\mathrm{M}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)} \mathrm{A}$
6. $D=\sqrt{\frac{20}{7} h(H-h)}$ where D is the distance the ball lands from the edge of the table, h is the height of the table above the floor, and H is the height of the center of the ball above the floor at the top of the ramp.

Multiple Choice Questions

1. e	11.e	21. b
2. a	12. d	22. c
3. b	13. d	23. e
4. c or d (they are the same)	14. b	24. a
5. e	15. b	25. e
6. c	16. d	26. b
7. a	17. a	27. b
8. c	18. b	28. a
9. a	19. e	29. a
10. a	20. b	30. c

