Sample final answers – fall 2001

Here are my answers to the sample final. Please remember that I am only human and I do make mistakes. Please let me know if you think any of these answers are wrong.

Problems

1. $T = \frac{2m_2 + M(1 - \mu)}{m_1 + m_2 + M} m_1 g$ where T is the force on the rope you want to find, M is the

mass of the block on the table, m_l is the mass of the block you are interested in, m_2 is the mass of the other block, μ is the coefficient of kinetic friction, and g is the gravitational acceleration.

$$T = \frac{2(20\text{kg}) + (30\text{kg})(1 - 0.08)}{(12\text{kg}) + (20\text{kg}) + (30\text{kg})} (12\text{kg}) \left(9.8 \frac{\text{m}}{\text{s}^2}\right) = 1.3 \times 10^2 \text{ N}$$

2.
$$T_1 = \frac{W_2 d_2 + W \frac{L}{2} + W_1 (L - d_1)}{L}$$
 where T_1 is the tension in the rope nearest the 115

lb worker, W_1 is the weight of that worker, d_1 is the distance of that worker from the end of the platform, W_2 is the weight of the other worker, and d_2 is the distance of that worker from the end of the platform.

$$T_{1} = \frac{(160lb)(4.0ft) + (130lb)\frac{(12ft)}{2} + (115lb)(12ft - 2.5ft)}{12ft} = 209lb$$

$$T_{2} = \frac{W_{1}d_{1} + W\frac{L}{2} + W_{2}(L - d_{2})}{L} = \frac{(115lb)(2.5ft) + (130lb)\frac{(12ft)}{2} + (160lb)(12ft - 4.0ft)}{12ft} = 196lb$$

3. $v_f = \frac{m}{m+M} v_o$ where v_f is the final velocity of the center of mass of the worker & ring system, m is the mass of the worker, M is the mass of the ring, and v_o is the speed of the worker before grabbing the ring.

 $\omega = \frac{mM}{m^2 + mM + M^2} \frac{v_o}{r} \quad \text{where } \omega \text{ is the final angular speed of the worker \& ring system}$ and r is the radius of the ring.

4. $v_j = \sqrt{2gL}$ where v_j is the speed that the jumping cat hits the ground, L is the length of the ladder, and g is the gravitational acceleration.

$$v_j = \sqrt{2\left(9.8 \frac{m}{s^2}\right) (4.0m)} = 8.9 \frac{m}{s}$$

$$v_h = \sqrt{2gL \frac{m + \frac{M}{2}}{m + \frac{M}{3}}} = v_f \sqrt{\frac{m + \frac{M}{2}}{m + \frac{M}{3}}}$$
 where v_h is the speed that the cat that hangs on hits

the ground, m is the mass of the cat, and M is the mass of the ladder.

$$v_h = 8.9 \frac{m}{s} \sqrt{\frac{(5.0 \text{kg}) + \frac{(15 \text{kg})}{2}}{(5.0 \text{kg}) + \frac{(15 \text{kg})}{3}}} = 10 \frac{m}{s}$$
 The cat is better off jumping.

5.
$$f = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{m + M}}$$
 where f is the frequency after the additional mass is added.

$$v_{\text{max}} = \frac{1}{m+M} \sqrt{M(k_1 + k_2)} A$$

6.
$$D = \sqrt{\frac{20}{7}h(H-h)}$$
 where D is the distance the ball lands from the edge of the table, h is the height of the table above the floor, and H is the height of the center of the ball above the floor at the top of the ramp.

Multiple Choice Questions

1. e	11. e	21. b	
2. a	12. d	22. c	
3. b	13. d	23. e	
4. c or d (they are the same)	14. b	24. a	
5. e	15. b	25. e	
6. c	16. d	26. b	
7. a	17. a	27. b	
8. c	18. b	28. a	
9. a	19. e	29. a	
10. a	20. b	30. c	