Review - Angular variables	
$\theta=\mathbf{L} / \mathbf{r}$	Chap. 9 sec. 1
$\omega=\mathrm{v} / \mathrm{r}$	
- Moment of Inertia	
$\mathrm{I}=\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}{ }^{2}$	Chap. 9 sec 2, 3
$\mathrm{I}=\mathrm{M} \mathrm{r}^{\mathbf{2}}$ (ring)	
$\mathbf{I}=\mathrm{f} \mathbf{~ M ~}{ }^{\mathbf{2}}$	
- Rolling without slipping	
$\mathbf{v}_{\text {com }}=\omega \mathbf{r}$	Chap. 9 sec 4, 6
- Rotational Kinetic Energy	
$K E_{\text {rotation }}=(1 / 2) I \omega^{2}$	Chap. 9 sec 5

Preview of Dynamics	
Rotations Described by Acceleration	
Rotational Kinematics Chap. 9 sec. 1	
Radial acceleration	
Tangential acceleration	
Angular acceleration	
Forces give accelerations	
Rotational Dynamics	
Torque Chap. 9 sec. 24, 6 Moments of inertia	
Vector nature of rotations	
Directions	Chap. 10 sec 1

Kinematics For an object rotating at a constant speed	
Old formulation	New formulation
Velocity	Angular velocity
$\overrightarrow{\mathrm{v}}$ is NOT constant	$\vec{\omega}$ is constant
v is constant	ω is constant
$\overrightarrow{\mathbf{v}}=\frac{\overrightarrow{\mathbf{r}}_{\mathbf{f}}-\overrightarrow{\mathbf{r}}_{\mathbf{i}}}{\Delta \mathbf{t}}$	$\bar{\omega}=\frac{\vec{\theta}_{\mathrm{f}}-\vec{\theta}_{\mathrm{i}}}{\Delta \mathrm{t}}$
v is NOT $\frac{r_{f}-r_{i}}{\Delta t}$	ω is $\frac{\theta_{\mathrm{f}}-\theta_{\mathrm{i}}}{\Delta t}$
$\stackrel{\rightharpoonup}{v}=\frac{\mathbf{d r}}{\mathbf{d t}}$	$\vec{\omega}=\frac{\mathbf{d} \vec{\theta}}{\mathbf{d t}}$
Acceleration	Angular acceleration
$\vec{a}=\frac{d \vec{v}}{d t}$	$\bar{\alpha}=\frac{\mathrm{d}}{\underline{\omega}} \mathrm{dt}$
$a=\frac{v^{2}}{r}(\text { radial })$	$\alpha=0$

Rotations

From the point of view of Forces (dynamics) Study the interactions of realistic objects First step, describe the motion

A simple case - two parts of a rotating disk
Our old formulation of kinematics is correct but complicated

Velocity \& acceleration different for each part

Make a simpler description of rotational motion

different cases:

1. Uniform Circular Motion all acceleration is radia
2. Disk speeding up or slowing down acceleration is not radial radial component tangential component

Rotating Object Increasing Angular Speed	
Old formulation	New formulation
Velocity	Angular velocity
v is NOT constant	ω is NOT constant
v is NOT $\frac{r_{f}-r_{i}}{\Delta t}$	ω is NOT $\frac{\theta_{f}-\theta_{i}}{\Delta t}$
$\overrightarrow{\mathrm{v}}=\frac{\mathrm{dr}}{\mathrm{dt}}$	$\vec{\omega}=\frac{\mathbf{d} \vec{\theta}}{\mathbf{d t}}$
Acceleration	Angular acceleration
$\overrightarrow{\mathrm{a}}$ is NOT constant	$\vec{\alpha}$ is constant
a is NOT $\frac{v_{f}-v_{i}}{\Delta t}$	$\alpha=\frac{\omega_{f}-\omega_{\mathrm{i}}}{\Delta \mathbf{t}}$
$\overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overline{\mathrm{v}}}{\mathrm{dt}}$	$\alpha=\frac{\mathbf{d} \omega}{\mathbf{d t}}$
$a_{t}=\frac{d v}{d t}$	
$\underline{v^{2}} \quad a^{2}=a_{t}^{2}+a_{r}^{2}$	

Constant Angular Acceleration

Special Case: $\quad \alpha$ is constant, $\alpha=\bar{\alpha}$
Find θ in terms of α and \mathbf{t}

$$
\begin{gathered}
\alpha=\frac{d \omega}{d t} \quad \omega=\frac{d \theta}{d t} \\
\alpha=\frac{d}{d t}\left(\frac{d \theta}{d t}\right)
\end{gathered}
$$

What function of time (θ)gives a constant ($\alpha)$ when you take two time derivatives?

$$
\theta=\frac{1}{2} \alpha \mathbf{t}^{2}+\mathbf{B} \mathbf{t}+\mathbf{C}
$$

Find constants B and C

pick a time

at $\mathbf{t}=0, \theta=\theta$ 。 $\theta_{\mathbf{o}}=\mathbf{C}$

$$
\theta=\frac{1}{2} \alpha \mathbf{t}^{2}+\mathbf{B} \mathbf{t}+\theta_{0}
$$

To find B, take the derivative with respect to time

$$
\frac{\mathbf{d} \theta}{\mathbf{d t}}=\alpha \mathbf{t}+\mathbf{B}
$$

$$
\omega=\alpha \mathbf{t}+\mathbf{B}
$$

pick a time

at $\mathrm{t}=0, \omega=\omega$ 。
$\omega_{0}=$ B
$\theta=\frac{1}{2} \alpha \mathbf{t}^{\mathbf{2}}+\omega_{\mathbf{0}} \mathbf{t}+\theta_{\mathbf{0}}$
\(\left.\begin{array}{|c}\hline DynamicS

In order to keep an object rotating

constant \omega

\alpha=0\end{array}\right\}\)| another object must apply a radial force |
| :---: |
| In order to change an object's rotation |
| Start something rotating |
| Rotate faster |
| Rotate slower |
| Stop something rotating |
| change ω |
| α Not $=0$ |
| another object must apply a tangential force |
| as well as a radial force |
| Now we look in more detail at changing |
| an object's rotation |

Where would we move weight 1 to balance?

Both the force and the distance from the pivot point are important

Suppose weight of 1 is twice weight of 2 .
Where would you move 2 to balance?

The force times the distance to the pivot is the important quantity

Only the tangential component of the force

$$
\text { Define } \tau=r F_{t}
$$

τ is called the torque

Review

Use Newton's 2nd Law
$\Sigma F_{t}=m a$
Use definition of angular acceleration $\mathrm{a}_{\mathrm{t}}=\mathrm{r} \alpha$
Get
$\tau=\mathrm{mr}^{2} \alpha$
Just another way of saying Newton's 2nd Law

For many forces just add all the torques and all the mr^{2}
$\Sigma \bar{\tau}=\left(\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}\right) \bar{\alpha}=1 \bar{\alpha}$

Draw a situation where angular acceleration is down.

```
Right hand rule
```

Curl the fingers of right hand in the direction the object's tangential acceleration.

Your thumb points in the direction of α

Rotational Dynamics Example Using a real pulley (not massless)

You wish to safely lower a pallet of bricks down the side of a building. To do this you attach the pallet to a rope that goes over a pulley with a moment of inertia and radius th you know. After going over the pulley, the rope goes horizontally across the top of the roof and is attached to a box of concrete
blocks that slides on a plastic base. To make sure this operation is safe, you calculate the maximum possible acceleration of the palle maxim prick whe it the frictiol force of breen the box and the roof is negligible. yotween the box and the roof is negiligible. concrete blocks and the pallet of bricks.

Approach:
Get acceleration using Newton's 2nd law on each block independently.
$\Sigma \overrightarrow{\mathrm{F}}=\mathbf{m a}$
Get the relationship between T_{1} and T_{2} from the torque on the pulley using Newton's 2nd law

$$
\sum \tau=\mathbf{m} \bar{\alpha}
$$

Get angular acceleration of pulley from the tangential acceleration of its edge. Tangential acceleration of edge of pulley is the same as the acceleration of rope.
assume rope does not slip on pulley Assume massless rope

Find a		unknowns
		a
$\mathrm{T}_{1}=\mathbf{M} \mathbf{a}$	1	T
Find T_{1}		
$\Sigma \tau=\mathrm{T}_{2} \mathbf{r}-\mathrm{T}_{1} \mathbf{r}$	2	$\Sigma \tau, \mathrm{T}_{2}$
Find $\Sigma \tau$		
$\Sigma \tau=1 \alpha$	3	α
Find α		
Find T_{2}		
$\mathrm{M}_{2} \mathrm{~g}-\mathrm{T}_{2}=\mathrm{Mba}$	5	
5 unknowns,	5 equations	

Does $\mathrm{T}_{1}=\mathrm{T}_{2}$?
To find out examine the motion of the pulley

Pulley's rotation is increasing
α is not zero
$\Sigma \tau=1 \alpha$
$\Sigma \tau=T_{2} \mathbf{r}-\mathrm{T}_{1} \mathbf{r}$
T_{1} ? $\mathrm{T}_{\mathbf{2}} \quad$ Because $\Sigma \tau$ is NOT zero.

$5 \quad \mathrm{M}_{2} \mathrm{~g}-\mathrm{M}_{2} \mathrm{a}=\mathrm{T}_{2} \quad$ Into [2]

$\Sigma \tau=\left(\mathrm{Mbg}-\mathrm{M}_{2} \mathrm{a}\right) \mathrm{r}-\mathrm{T}_{1} \mathbf{r}$
Solve [4] for a and put into [3]

$$
\begin{aligned}
& \Sigma \tau=\frac{\operatorname{la}}{\mathbf{r}} \quad \text { Put into [2] } \\
& \mathbf{I} \frac{\mathbf{a}}{\mathbf{r}}=\left(M_{2} g-M_{2} a\right) \mathbf{r}-T_{1} \mathbf{r} \\
& \quad 1 \frac{a}{r^{2}}-\left(M_{2} g-M_{2} a\right)=-T_{1} \quad \text { Into [1] } \\
& I \frac{a}{\mathbf{r}^{2}}-\left(M_{2} g-M_{2} a\right)=-M_{1} a
\end{aligned}
$$

Solve for a

$$
\begin{aligned}
& 1 \frac{a}{r^{2}}+M_{1} a+M_{2} a=\left(M_{2} g\right) \\
& a=\frac{M_{2} g}{\left(M_{1}+M_{2}\right)+\frac{1}{r^{2}}}
\end{aligned}
$$

Find N_{1} unknowns $\Sigma F_{y}=N_{1}+N_{2}-W=0$ N_{1}	
Find N_{2}	
$\Sigma \tau=-\mathbf{r}_{1} \mathbf{W}+\mathbf{r}_{2} \mathbf{N}_{2}=\mathbf{0}$	$0 \quad \mathrm{~N}_{2}$
2 unknowns, 2 equations	
$-r_{1} \mathrm{~W}+\mathrm{r}_{2} \mathrm{~N}_{2}=0$	
$\mathrm{N}_{2}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}} \mathbf{W}$	
$\mathrm{N}_{1}+\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}} \mathbf{W}-\mathrm{W}=\mathbf{0}$	
$\mathrm{N}_{1}=\mathrm{W}\left(1-\frac{r_{1}}{r_{2}}\right)$	$\mathrm{N}_{1}=(60 \mathrm{lbs})\left(1-\frac{2 \mathrm{ft}}{3 \mathrm{ft}}\right)$
	$\mathrm{N}_{1}=20 \mathrm{lbs}$
$\mathrm{N}_{2}=\frac{2 \mathrm{ft}}{3 \mathrm{ft}}(60 \mathrm{lbs})$	$\mathrm{N}_{2}=40 \mathrm{lbs}$
Could have taken axis of solve it that way	of rotation at support 2 ay

Example

Example
A uniform steel bar weighing 60 lbs is resting
on two supports that are each sitting on a
bathroom scale. The bar is 6.0 feet long. One
support is 1.0 ft from the end of the bar and
the other is 2.0 ft from the other end of the
bar. What does each bathroom scale read?

Direction of Torque
 $$
\tau=\mathbf{r} \boldsymbol{K} \quad \sum \vec{\tau}=\mathbf{I} \bar{\alpha}
$$
 If there is only one torque

the direction of the torque is the direction of the angular acceleration

Get magnitude and direction from the force Vector mathematics

Need to multiply 2 vectors
$\overrightarrow{\mathbf{r}} \quad \overrightarrow{\mathbf{F}}$
to get a vector
Vector cross product -- $\vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$

$$
\vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} \text { means }
$$

multiply r times the componen of F perpendicular to r
direction is perpendicular to both r and F
using the right hand rule
curl fingers from r to F
Thumb in direction of $\vec{\tau}$

Example

An object rolls down a ramp that is at a known angle with the horizontal. Determin its acceleration if you know its moment of inertia, its mass, and its radius.

What is the acceleration of the object?
What does rolling mean?
When the object goes around once, it has gone forward a distance of $2 \pi r$

$$
\begin{array}{r}
\mathbf{r} \Delta \phi \\
\text { which gives }
\end{array}
$$

$$
\mathbf{r} \omega=\mathbf{v} \quad \text { and } \quad \alpha \mathbf{r}=\mathbf{a}
$$

Need static friction for rolling
Use Newton's 2nd law
Forces
Torque

How does this acceleration depend on the
mass of the object?

$$
a=\frac{M g \sin \theta}{M+\frac{1}{r^{2}}}
$$

since $\mathrm{I}=\mathrm{f} \mathrm{Mr}^{2}$
where $\mathrm{f}<1$
$a=\frac{M g \sin \theta}{\mathrm{MMr}^{2}}$
$\mathbf{M}+\frac{\mathrm{fMr}}{\mathbf{r}^{2}}$
$a=g \sin \theta$ The acceleration down the ramp does not depend on the object's mass.

The acceleration down the ramp also does not depend on the object's radius.

The acceleration down the ramp only depends on the object's shape (f).

	unknowns
Find a	a
$\mathbf{M g} \sin \theta-\mathrm{f}_{\mathrm{S}}=\mathbf{M a} \quad \square$	$\mathrm{f}_{\text {s }}$
Find fs	
$\tau=\mathbf{r f}_{\mathbf{S}} \quad 2$	τ
Find τ	
$\tau=\mathbf{I} \alpha$	α
Find α	
$\alpha \mathbf{r}=\mathbf{a}$	
4 unknowns, 4 equations	OK to solve

Suppose that a hoop, a cylinder, and a solid sphere raced down a ramp. Which would win?

