

Describe Interactions by Forces Contact
Friction
Normal
Tension
Spring
Non-Contact
Gravitational
Describe Interactions by Conservation
Energy
Momentum
Angular Momentum
-

You have volunteered to be a safety adviser for a charity circus. In an act that you are reviewing, one acrobat drops straight down from a platform while at the same time another one jumps straight up from a trampoline and catches the falling acrobat. What fraction of the distance between the platform and the trampoline will the catch take place if both acrobats have the same speed at the catch.

See solutions of quiz 1

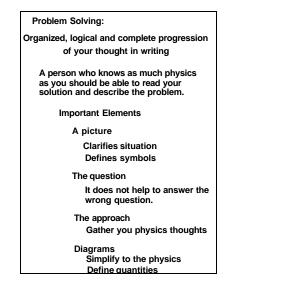
Physics 1301

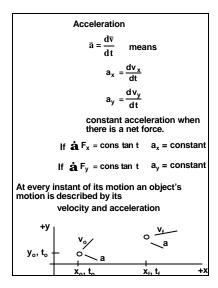
Understanding the Interactions of Objects Interactions effect an object's motion

> Motion in perpendicular directions Independent

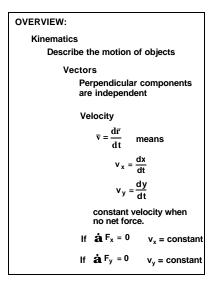
Coordinate system

Vectors and their components

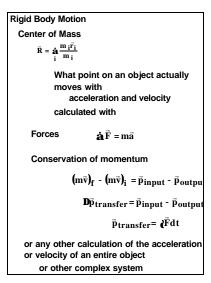

Causality The change of velocity of one object or system must be caused by an interaction with ANOTHER object or system.

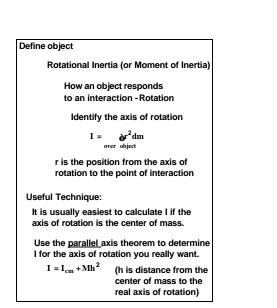

Describing Motion Position Time Change

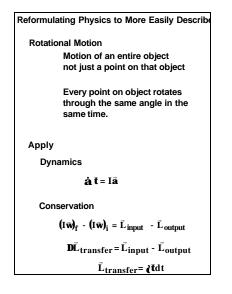

> Kinematics Translational – center of mass Rotational Oscillations


Tables		
Tools:		
Vectors		
position	angle	
velocity	angular momentum	
acceleration	angular acceleration	
Force	Torque	
Momentum	Angular Momentum	
Perpendicular Components are Independent		
Coordinate System		
+у		
В	, ,	
a		
-	+X	

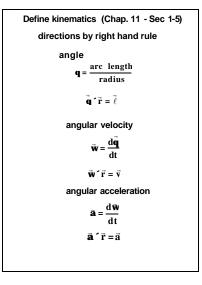
Mathematics: Organized Algebra Trig. for Components of Vectors Simple Geometry Calculus Derivatives Integrals àdx àxdx

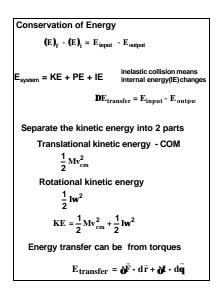


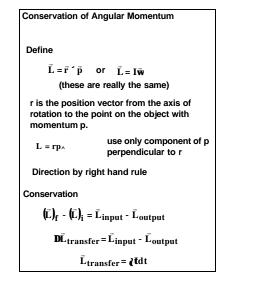




$a_x = \frac{dv_x}{dt}$	$a_y = \frac{dv_y}{dt}$		
$a_{x} = \frac{dv_{x}}{dt}$ $v_{x} = \frac{dx}{dt}$	$v_y = \frac{dy}{dt}$		
$a_x = \frac{d^2x}{dt^2}$	$v_y = \frac{d^2y}{dt^2}$		
If a _x is constant			
$a_x = \frac{d^2x}{dt^2}$	means		
$x = \frac{1}{2}a_x$	$x = \frac{1}{2}a_{x}(t - t_{o})^{2} + v_{ox}(t - t_{o}) + x_{o}$		
_	for any x,t		
If a _x is constant	t		
$v_y = \frac{d^2 y}{dt^2}$	means		
$y = \frac{1}{2}a$	$y(t - t_o)^2 + v_{oy}(t - t_o) + y_o$		
	for any y,t		


Review Tools:
Computer Quizzes
Multiple Choice in Lab Book
Problems in Competent Problem Solver
Quizzes
Group Problems
Study Group
TA's
Me





Dynamics			
$\mathbf{\dot{a}}\mathbf{\vec{F}} = \mathbf{m}\mathbf{\vec{a}}$		ow the center of mass of tresponds to an	
	-	on (translational motion)	
$\dot{\mathbf{a}} \mathbf{t} = \mathbf{I} \mathbf{a}$ Gives how an object's rotation			
		ls to an interaction nal motion)	
Torques are	caused I	by forces	
ť	=r̃´F̃	direction by right hand rule	
•		ctor from the axis of to finteraction	
t = rF		use only the component of F perpendicular to r	

Oscillations
Application of Physics to
Systems with Periodic Motion
Studied only special case of Periodic Motion
Simple Harmonic Motion
Position can be described by
a cosine or a sine function which
changes with time.
How to solve:
 Write the equation of motion using
Dynamics
Conservation
 Guess a solution Acos(2pft+f)
 f is the frequency of the motion Put solution into the equation of motion
Check to see if it is a solution
Frequency is determined