

Describe Interactions by Forces
Contact
Friction
Normal
Tension
Spring
Non-Contact
Gravitational
Describe Interactions by Conservation
Energy
Momentum
Angular Momentum

Physics 1301

You have volunteered to be a safety advise
or a charity circus. in an act that you are reviewing, one acrobat drops straight down
rom a platform while at the same time another one jumps straight up from a
trampoline and catches the falling acrobat. What fraction of the distance between the platform and the trampoline will the catch the place if both acrobats have the same speed at the catch.

See solutions of quiz

Understanding the Interactions of Objects Interactions effect an object's motion

Motion in perpendicular directions Independent
Coordinate system
Vectors and their components

Causality

The change of velocity of one object or system must be caused by an interaction with ANOTHER object or system

Describing Motion
Position
Time
Change
Kinematics
Translational - center of mass
Rotational
Oscillations

Mathematics:
Organized Algebra
Trig. for Components of Vectors
Simple Geometry
Calculus
Derivatives
Integrals
$\int d x$
$\int x d$

```
Problem Solving:
Organized, logical and complete progression
        of your thought in writing
    A person who knows as much physics
    s you should be able to read your
    as you should be able to read your
        Important Elements
            A picture
            Clarifies situation
            Defines symbols
            The question
                It does not help to answer the
            wrong question.
            The approach
                Gather you physics thoughts
            Diagrams
                Simplify to the physics
                Define quantities
```

Fundamental Principles Equations you might use

Organized mathematical Development

Checking

Units
Reasonable
Answered question

$$
\begin{array}{lc}
a_{x}=\frac{d v_{x}}{d t} & a_{y}=\frac{d v_{y}}{d t} \\
v_{x}=\frac{d x}{d t} & v_{y}=\frac{d y}{d t} \\
a_{x}=\frac{d^{2} x}{d t^{2}} & v_{y}=\frac{d^{2} y}{d t^{2}} \\
\text { If } a_{x} \text { is constant } & \\
a_{x}=\frac{d^{2} x}{d t^{2}} & \text { means } \\
x=\frac{1}{2} a_{x}\left(t-t_{0}\right)^{2}+v_{o x}\left(t-t_{0}\right)+x_{0} \\
\text { for any } x, t
\end{array}
$$

At every instant of its motion an object's motion is described by its velocity and acceleration

OVERVIEW

Kinematics

Describe the motion of objects
Vectors
Perpendicular components
are independent
Velocity
$\vec{v}=\frac{\mathbf{d r}}{\mathbf{d t}} \quad$ means
$v_{\mathrm{x}}=\frac{\mathrm{dx}}{\mathrm{dt}}$
$v_{y}=\frac{d y}{d t}$
constant velocity when no net force.
If $\sum \mathrm{F}_{\mathrm{x}}=\mathbf{0} \quad \mathrm{v}_{\mathrm{x}}=$ constant
If $\sum F_{y}=0 \quad v_{y}=$ constant

Review Tools:

Computer Quizzes

Multiple Choice in Lab Book
Problems in Competent Problem Solver
Quizzes
Group Problems
Study Group
TA's
Me

Reformulating Physics to More Easily Describa

```
Rotational Motion
Motion of an entire objec not just a point on that object
```

Every point on object rotates through the same angle in the same time.

Apply
Dynamics

$$
\sum \vec{\tau}=\mathbf{I} \vec{\alpha}
$$

Conservation

$$
\begin{gathered}
(\mathbf{I} \vec{\omega})_{\mathbf{f}}-(\mathbf{I} \vec{\omega})_{\mathbf{i}}=\overrightarrow{\mathbf{L}}_{\text {input }}-\overrightarrow{\mathbf{L}}_{\text {output }} \\
\Delta \overrightarrow{\mathbf{L}}_{\text {transfer }}=\overrightarrow{\mathbf{L}}_{\text {input }}-\overrightarrow{\mathbf{L}}_{\text {output }} \\
\overrightarrow{\mathbf{L}}_{\text {transfer }}=\int \vec{\tau} \mathbf{d t}
\end{gathered}
$$

Dynamics		
$\sum \overrightarrow{\mathbf{F}}=\mathbf{m a}$	Gives an ob intera	ow the center of mass of ct responds to an ion (translational motion)
$\sum \vec{\tau}=\mathbf{I} \vec{\alpha}$	Give respo (rotat	how an object's rotation ds to an interaction nal motion)
Torques are caused by forces		
		direction by right hand rule
r is the position vector from the axis of rotation to the point of interaction		
$\tau=\mathbf{r F}$		use only the component of F perpendicular to r

Conservation of Energy

$$
(\mathbf{E})_{\mathbf{f}}-(\mathbf{E})_{\mathbf{i}}=\mathbf{E}_{\text {input }}-\mathbf{E}_{\text {output }}
$$

$\mathrm{E}_{\text {system }}=\mathrm{KE}+\mathrm{PE}+\mathrm{IE}$ inelastic collision means internal energy(IE) chan
$\Delta \mathbf{E}_{\text {transfer }}=\mathbf{E}_{\text {input }}-\mathbf{E}_{\text {outpu }}$

Separate the kinetic energy into 2 parts Translational kinetic energy - COM $\frac{1}{2} \mathrm{Mv}_{\mathrm{cm}}^{2}$
Rotational kinetic energy
$\frac{1}{2} \mathrm{I} \omega^{2}$
$K E=\frac{1}{2} \mathrm{Mv}_{\mathrm{cm}}^{2}+\frac{1}{2} \mathrm{I} \omega^{2}$
Energy transfer can be from torques

[^0]| Conservation of Angular Momentum | |
| :---: | :---: |
| Define | |
| $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \quad \text { or } \quad \overrightarrow{\mathbf{L}}=\mathbf{I} \vec{\omega}$
 (these are really the same) | |
| r is the position vector from the axis of rotation to the point on the object with momentum p . | |
| $L=\mathbf{r p}_{\perp}$ | use only component of p perpendicular to r |
| Direction by right hand rule | |
| Conservation | |
| $(\overrightarrow{\mathbf{L}})_{\mathbf{f}}-(\overrightarrow{\mathbf{L}})_{\mathbf{i}}=\overrightarrow{\mathbf{L}}_{\text {input }}-\overrightarrow{\mathbf{L}}_{\text {output }}$ | |
| $\Delta \overrightarrow{\mathbf{L}}_{\text {transfer }}=\overrightarrow{\mathbf{L}}_{\text {input }}-\overrightarrow{\mathbf{L}}_{\text {output }}$ | |
| $\overrightarrow{\mathbf{L}}_{\text {transfer }}=\int \bar{\tau} \mathbf{d t}$ | |

Oscillations
 Application of Physics to
 Systems with Periodic Motion

Studied only special case of Periodic Motion
Simple Harmonic Motion
Position can be described by
a cosine or a sine function which
changes with time.
How to solve:
Write the equation of motion using

- Dynamics
- Conservation

Guess a solution $A \cos (2 \pi \mathrm{ft}+\phi)$

- f is the frequency of the motion
- Put solution into the equation of motion
- Check to see if it is a solution

Frequency is determined

[^0]: $\mathbf{E}_{\text {transfer }}=\int \overrightarrow{\mathbf{F}} \bullet \mathbf{d} \overrightarrow{\mathbf{r}}+\int \vec{\tau} \bullet \mathbf{d} \vec{\theta}$

