Solutions to quiz 1

1. Group part.

What is the car's average acceleration coming down the hill?

Approach: Use definition of average acceleration for the car on the hill.
Perpendicular components of motion are independent
When car is in the air
Horizontal velocity is constant
Average horizontal velocity = instantaneous horizontal velocity
Vertical acceleration is constant
Average horizontal acceleration $=$ instantaneous horizontal acceleration
Stone and car have the same vertical acceleration and same initial vertical velocity so they fall in the same time.
Assume car does not slow down in short parking lot.
Neglect air resistance.

Motion diagram on the hill:

Target: a

Motion diagram in the air:

On the hill: $a_{a v}=\frac{v_{1}-v_{0}}{t_{1}-t_{0}}=\frac{v_{1}}{t_{1}}$ (definition of average acceleration)
In the air: $\quad v_{a v x}=v_{x}=v_{1}=\frac{x_{f}-x_{2}}{t_{f}-t_{2}}=\frac{x_{f}}{t_{f}-t_{2}}$ (horizontal velocity is constant)

$$
a_{a v y}=a_{y}=-g=\frac{-v_{f y}-v_{2 y}}{t_{f}-t_{2}}=\frac{-v_{f y}}{t_{f}-t_{2}} \text { (vertical acceleration is constant) }
$$

$y_{f}=-\frac{1}{2} g\left(t_{f}-t_{2}\right)^{2}+v_{2 y}\left(t_{f}-t_{2}\right)+y_{2} \quad$ (vertical acceleration is constant)

$$
0=-\frac{1}{2} \mathrm{~g}\left(\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{2}\right)^{2}+\mathrm{y}_{2}
$$

Plan:
Find a_{av}
$\mathrm{a}_{\mathrm{av}}=\frac{\mathrm{v}_{1}}{\mathrm{t}_{1}} \quad 1$
unknowns
a_{av}
v_{1}
Find v_{1}
$v_{1}=\frac{x_{f}}{t_{f}-t_{2}} \quad 2$
2 unknowns and 2 equations, can be solved
$\mathrm{v}_{1}=\frac{\mathrm{x}_{\mathrm{f}}}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{2}}$ put into 1

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{av}}=\frac{\frac{\mathrm{x}_{\mathrm{f}}}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{2}}}{\mathrm{t}_{1}}=\frac{\mathrm{x}_{\mathrm{f}}}{\mathrm{t}_{1}\left(\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{2}\right)} \\
& \mathrm{a}_{\mathrm{av}}=\frac{30 \mathrm{ft}}{3.0 \mathrm{~s}(5.0 \mathrm{~s})}=2.0 \frac{\mathrm{ft}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Evaluation:
$\mathrm{ft} / \mathrm{s}^{2}$ are the correct units for an acceleration.
The average acceleration down the hill is less than the free fall acceleration which is reasonable. In the equation for average acceleration, if the car fell further from the hill, the average acceleration would be larger. That makes sense since the car would have been moving faster when it went over the cliff.

The average acceleration of the car on the hill answers the question.

Solutions to Individual Part of Quiz 1
2.

What fraction of the height of the platform does B travel before the catch? Find y_{f} in terms of h.

Approach: Use constant acceleration kinematics for both A and B.
Acceleration of both people is g . Neglect their interaction with the air. Instantaneous acceleration = average acceleration.

Motion diagram:

$$
\begin{aligned}
& \mathrm{y}_{1}=\mathrm{h} \\
& \mathrm{t}_{\mathrm{o}}=0 \\
& \mathrm{v}_{\mathrm{Ao}}=0 \\
& \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{y}_{\mathrm{o}}=0 \\
& \mathrm{v}_{\mathrm{Bo}}=? \\
& \mathrm{y}_{\mathrm{f}}=? \\
& \mathrm{t}_{\mathrm{F}}=? \\
& \mathrm{v}_{\mathrm{f}}=?
\end{aligned}
$$

Target: yf_{f}

Constant acceleration for A:

$$
\begin{aligned}
& \mathrm{a}=\mathrm{a}_{\mathrm{av}}=\frac{\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{o}}}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{o}}}=\frac{-\mathrm{v}_{\mathrm{f}}}{\mathrm{t}_{\mathrm{f}}}=-\mathrm{g} \\
& \mathrm{y}_{\mathrm{f}}=-\frac{1}{2} \mathrm{~g}\left(\mathrm{t}_{\mathrm{f}}\right)^{2}+\mathrm{h}
\end{aligned}
$$

Constant acceleration for B:

$$
\begin{aligned}
& a=a_{a v}=\frac{v_{f}-v_{o}}{t_{f}-t_{o}}=\frac{v_{f}-v_{B o}}{t_{f}}=-g \\
& y_{f}=-\frac{1}{2} g\left(t_{f}\right)^{2}+v_{B o} t_{f}
\end{aligned}
$$

Plan
Find y_{f}
$y_{f}=-\frac{1}{2} g\left(t_{f}\right)^{2}+v_{B o} t_{f}$
1
unknowns
yf_{f}
$\mathrm{t}_{\mathrm{f}}, \mathrm{v}_{\mathrm{Bo}}$

Find t_{f}
$y_{f}=-\frac{1}{2} g\left(t_{f}\right)^{2}+h$
Find $v_{B o}$
$\frac{v_{f}-v_{B o}}{t_{f}}=-g$
v_{f}
Find v_{f}
$\frac{-v_{f}}{t_{f}}=-g$
4 unknowns, 4 equations ok to solve

$$
\begin{aligned}
& \frac{-v_{f}}{\mathrm{t}_{\mathrm{f}}}=-\mathrm{g} \\
& \mathrm{v}_{\mathrm{f}}=\mathrm{gt}_{\mathrm{f}} \text { put into } 3 \\
& \frac{\mathrm{gt}_{\mathrm{f}}-\mathrm{v}_{\mathrm{Bo}}}{\mathrm{t}_{\mathrm{f}}}=-\mathrm{g} \\
& \mathrm{gt}_{\mathrm{f}}+\mathrm{gt}_{\mathrm{f}}=\mathrm{v}_{\text {Bo }} \\
& 2 \mathrm{gt}_{\mathrm{f}}=\mathrm{v}_{\text {Bo }} \text { put into } 1 \\
& \mathrm{y}_{\mathrm{f}}=-\frac{1}{2} \mathrm{~g}\left(\mathrm{t}_{\mathrm{f}}\right)^{2}+\left(2 \mathrm{gt}_{\mathrm{f}}\right) \mathrm{t}_{\mathrm{f}} \\
& \mathrm{y}_{\mathrm{f}}=\frac{3}{2} \mathrm{~g}\left(\mathrm{t}_{\mathrm{f}}\right)^{2} \text { get } \mathrm{t}_{\mathrm{f}}^{2} \text { from } 2
\end{aligned}
$$

$$
\begin{aligned}
& y_{f}=-\frac{1}{2} g\left(t_{f}\right)^{2}+h \\
& \frac{1}{2} g\left(t_{f}\right)^{2}=h-y_{f} \\
& \left(t_{f}\right)^{2}=2 \frac{h-y_{f}}{g} \text { put into } 1 \\
& y_{f}=\frac{3}{2} g\left(2 \frac{h-y_{f}}{g}\right) \\
& y_{f}=3\left(h-y_{f}\right) \\
& 4 y_{f}=3 h \\
& \frac{y_{f}}{h}=\frac{3}{4} \quad \text { check units: } \frac{[m]}{[m]}=1 \text { no units is correct for a fraction. }
\end{aligned}
$$

Evaluation:

The answer has no units which is correct for a fraction.
The answer is reasonable since it is between the platform and the trampoline. The fraction is less than 1 and greater than 0 .

The question has been answered. The fraction of the distance between the trampoline and the platform that the catch takes place is $3 / 4$.
3.

What distance does A travel before met by B ?

Approach: Both canoes travel with constant velocity so average velocity = instantaneous velocity.
Use the definition of average velocity.
Perpendicular components of velocity are independent.

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{o}}=0 \\
& \mathrm{t}_{\mathrm{o}}=0 \\
& \mathrm{y}_{0}=0 \\
& \mathrm{v}_{\mathrm{B}}=5.0 \mathrm{mi} / \mathrm{hr} \\
& \mathrm{x}_{1}=10 \mathrm{mi} \\
& \mathrm{v}_{\mathrm{A}}=4.0 \mathrm{mi} / \mathrm{hr} \\
& \mathrm{y}_{\mathrm{f}}=? \\
& \mathrm{t}_{\mathrm{F}}=?
\end{aligned}
$$

$v_{A}=v_{\text {Aav }}=\frac{y_{f}-y_{o}}{t_{f}-t_{0}} \quad v_{\text {Bx }}=v_{\text {Bxav }}=\frac{x_{1}-x_{0}}{t_{f}-t_{0}} \quad v_{\text {By }}=v_{\text {Byav }}=\frac{y_{f}-y_{o}}{t_{f}-t_{o}}$

$$
v_{B x}^{2}+v_{B y}^{2}=v_{B}^{2}
$$

Target: yf_{f}

Plan
Find y_{f}
$v_{A}=\frac{y_{f}}{t_{f}} \quad 1$

Unknowns

yf_{f}
t_{f}

Find t_{g}
$v_{B x}=\frac{x_{1}}{t_{f}} \quad 2$
V_{Bx}
Find $v_{B x}$
$v_{B x}^{2}+v_{\text {By }}^{2}=v_{B}^{2} \quad 3 \quad v_{B y}$
Find $v_{b y}$
$v_{B y}=\frac{y_{f}}{t_{f}} \quad 4$
4 unknowns, 4 equations - ok to solve
$v_{B x}^{2}+\left(\frac{y_{f}}{t_{f}}\right)^{2}=v_{B}^{2} \quad$ solve for $v_{B x}$
$v_{B x}=\sqrt{v_{B}^{2}-\left(\frac{y_{f}}{t_{f}}\right)^{2}}$
$\sqrt{v_{B}^{2}-\left(\frac{y_{f}}{t_{f}}\right)^{2}}=\frac{x_{1}}{t_{f}} \quad$ solve for t_{f}
$v_{B}^{2}-\left(\frac{y_{f}}{t_{f}}\right)^{2}=\left(\frac{x_{1}}{t_{f}}\right)^{2}$
$v_{B}^{2} t_{f}^{2}-y_{f}^{2}=x_{1}^{2}$
$\mathrm{t}_{\mathrm{f}}=\sqrt{\frac{\mathrm{x}_{1}^{2}+\mathrm{y}_{\mathrm{f}}^{2}}{\mathrm{v}_{\mathrm{B}}^{2}}}$
$v_{A}=\frac{y_{f}}{\sqrt{\frac{x_{1}^{2}+y_{f}^{2}}{v_{B}^{2}}}} \quad$ solve for y_{f}

$$
\begin{aligned}
& v_{A} \sqrt{\frac{x_{1}^{2}+y_{f}^{2}}{v_{B}^{2}}}=y_{f} \\
& v_{A}^{2} \frac{x_{1}^{2}+y_{f}^{2}}{v_{B}^{2}}=y_{f}^{2} \\
& v_{A}^{2} x_{1}^{2}+v_{A}^{2} y_{f}^{2}=y_{f}^{2} v_{B}^{2} \\
& v_{A}^{2} x_{1}^{2}=y_{f}^{2} v_{B}^{2}-v_{A}^{2} y_{f}^{2} \\
& v_{A}^{2} x_{1}^{2}=y_{f}^{2}\left(v_{B}^{2}-v_{A}^{2}\right) \\
& \left(\frac{v_{A}^{2} x_{1}^{2}}{\left(v_{B}^{2}-v_{A}^{2}\right.}\right)=y_{f}^{2} \\
& \frac{v_{A} x_{1}}{\sqrt{\left(v_{B}^{2}-v_{A}^{2}\right)}}=y_{f} \\
& \text { check units: } \frac{\left[\frac{\mathrm{m}}{\mathrm{~s}}\right][\mathrm{m}]}{\sqrt{\left[\frac{\mathrm{m}}{\mathrm{~s}}\right]^{2}}}=[\mathrm{m}]=\mathrm{y}_{\mathrm{f}} \quad[\mathrm{~m}]=\mathrm{y}_{\mathrm{f}} \text { correct units }
\end{aligned}
$$

$\frac{(10 \mathrm{mi})(4.0 \mathrm{mi} / \mathrm{hr})}{\sqrt{(5.0 \mathrm{mi} / \mathrm{hr})^{2}-(4.0 \mathrm{mi} / \mathrm{hr})^{2}}}=\mathrm{y}_{\mathrm{f}}=13.3 \mathrm{mi}$ from the shore along a line perpendicular to the two cabins.

The units (miles) are correct for a distance
13 miles is a reasonable distance to paddle. It is slightly more than the distance that the cabins are apart.
From the equation that represents the answer, $\frac{v_{A} x_{1}}{\sqrt{\left(v_{B}^{2}-v_{A}^{2}\right)}}=y_{f}$, if the second person goes faster $\left(v_{B}\right.$ larger), the meeting will take place at a smaller distance $\left(\mathrm{y}_{\mathrm{f}}\right)$ is smaller. This is reasonable.

The question has been answered, they will meet 13.3 miles from A's cabin perpendicular to the line between the two cabins.

Conceptual Questions:

1. b
2. c
3. e
4. b
5. d
6. d
7. e
8. d
9. c
10. a
