Example:

When visiting an office building you notice that it has an atrium with an enormous pendulum with one end attached to the roof of the building and the other end nearly reaching the floor. You observe that the pendulum takes 6.0 seconds to swing across the floor. How tall is the building?

R/8/ $/{ }^{\text {R }}$	What is the length of the pendulum? R $\text { Period }=\mathrm{T}=12.0 \mathrm{~s}$
Use dynamics to get equation of motion of pendulum bob.	
Use torques : axis of rotation is roof suspension	
	$\alpha=\frac{d \omega}{d t}=\frac{d}{d t}\left(\frac{d \theta}{d t}\right)=\frac{d^{2} \theta}{d t^{2}}$

Assume:

No torques due to friction in suspension No air resistance
Bob is a point object, massless string

Free body diagram of bob	Torque diagram
T/ ${ }^{\text {a }}$	+y
$\overbrace{\mathrm{w}}$	
$\mathrm{I}=\mathrm{mR}^{\mathbf{2}}$	$\tau=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$
Target R:	$\tau=-\mathbf{R m g s i n} \theta=1 \frac{\mathbf{d}^{2} \theta}{\mathbf{d t}^{2}}$
Find R	
$-\mathrm{Rmg} \sin \theta=m \mathrm{R}^{2} \frac{}{d}$	
$-g \sin \theta=R \frac{d^{2} \theta}{d t^{2}}$	
Difficult to guess solution to this equ.	

$$
\mathbf{g}\left(\frac{\mathbf{T}}{2 \pi}\right)^{2}=\mathbf{R}
$$

check units:

$$
\left[\frac{\mathrm{m}}{\mathrm{~s}^{2}}\right][\mathrm{s}]^{2}=[\mathrm{m}] \quad \text { ok }
$$

$32 \frac{\mathrm{ft}}{\mathrm{s}^{2}}\left(\frac{120 \mathrm{~s}}{2 \pi}\right)^{2}=\mathrm{R}$
$117 \mathrm{ft}=\mathrm{R}$
Is this unreasonable?
A longer length takes more time which is reasonable.
At 10 ft per story, this is a $\mathbf{1 2}$ story building
Tallest buildings in Minneapolis are about 50 floors high.
This is not unreasonable.

Note that frequency of pendulum
from torque equation

$$
\begin{aligned}
& g=R(2 \pi f)^{2} \\
& \frac{1}{2 \pi} \cdot \sqrt{\frac{g}{R}}=f
\end{aligned}
$$

frequency of oscillation of pendulum

Independent of mass

 Depends on gIf you recall
frequency of oscillation of spring

$$
\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=f
$$

Independent of \mathbf{g}
Depends on mass

Choose the approach to the problem

Several are possible

Conservation Approach

energy
momentum
angular momentum

Dynamics Approach

forces
torques
How to choose
Do you have enough information to use the approach?

Does the approach give you what you want to know?

Use conservation of energy to get equation of motion of pendulum bob.

System: bob \& Earth

initial time: bob at highest point Final time: during swing
Types of energy to consider
Gravitational potential energy
Rotational kinetic energy

Assume:

No energy transfer due to friction in
suspension or air resistance
Massless string

$$
\begin{aligned}
& \text { System: bob \& Earth } \\
& \text { Initial Energy } \\
& \mathrm{E}_{\mathrm{f}}=\mathrm{mgh} \quad \mathrm{E}_{\text {transfer }}=0 \quad \mathrm{E}_{\mathrm{f}}=\frac{1}{2} \mathrm{l} \omega^{2}+\mathrm{mgy}
\end{aligned}
$$

Conservation of Energy:

$$
E_{f}-E_{i}=E_{\text {transter }}
$$

$$
\frac{1}{2} 1 \omega^{2}+m g y-m g h=0
$$

$$
\omega=\frac{d \theta}{d t}
$$

$$
\mathrm{I}=\mathrm{mR}^{2}
$$

need y in terms of θ
$\boldsymbol{\operatorname { c o s }} \theta=\frac{\mathbf{R}-\mathbf{y}}{\mathbf{R}}$
$\mathbf{y}=\mathbf{R}-\mathbf{R} \boldsymbol{\operatorname { c o s }} \theta$

Do the same problem but now use a conservation of energy approach.

Example:

When visiting an office building you notice that it has an atrium with an enormous pendulum with one end attached to the roof of the building and the other end nearly reaching the floor. You observe that the pendulum takes 6.0 seconds to swing across the floor. How tall is the building?

$$
\begin{aligned}
& \text { Conservation of energy: } \\
& \frac{1}{2} l \omega^{2}+m g y-m g h=0 \\
& \frac{1}{2} m R^{2}\left(\frac{d \theta}{d t}\right)^{2}+m g(R-R \cos \theta)-m g h=0 \\
& \frac{1}{2} R^{2}\left(\frac{d \theta}{d t}\right)^{2}-g R \cos \theta+g R-g h=0 \\
& \cos \theta \approx 1-\frac{\theta^{2}}{2} \quad \text { For small angles } \\
& \frac{1}{2} R^{2}\left(\frac{d \theta}{d t}\right)^{2}-g R\left(1-\frac{\theta^{2}}{2}\right)+g R-g h=0 \\
& \frac{1}{2} R^{2}\left(\frac{d \theta}{d t}\right)^{2}+g R \frac{\theta^{2}}{2}-g h=0 \\
& R^{2}\left(\frac{d \theta}{d t}\right)^{2}+g R \theta^{2}-2 g h=0
\end{aligned}
$$

$$
\begin{aligned}
& \cos ^{2}(2 \pi f t+\phi)+\sin ^{2}(2 \pi f t+\phi)=1 \\
& \text { This is independent of } t \\
& \text { Will result from } \\
& A^{2}(2 \pi f)^{2} R^{2} \cos ^{2}(2 \pi f t+\phi)+A^{2} g R \sin ^{2}(2 \pi f t+\phi) \\
& \text { if } \\
& A^{2}(2 \pi f)^{2} R^{2}=A^{2} g R \\
& f=\frac{1}{2 \pi} \sqrt{\frac{g}{R}} \\
& A^{2} \frac{g}{R} R^{2} \cos ^{2}(2 \pi f t+\phi)+A^{2} g R \sin ^{2}(2 \pi f t+\phi)=2 g h \\
& A^{2} g R=2 g h \\
& A=\sqrt{\frac{2 h}{R}}
\end{aligned}
$$

Example

Your friend is designing a decorative clock for a class project. The plan calls for the timing of the clock to be regulated by a swinging ring. The ring is suspended at its top so that it swings back and forth. Your friend asks you to determine how the size and mass of the ring affects the timing of the clock.

$$
\begin{aligned}
& \text { Check } \\
& \begin{array}{l}
A=\sqrt{\frac{2 h}{R}} \quad A \text { is } \theta_{\text {max }} \\
\theta_{\text {max }}=\frac{\sqrt{R^{2}-(R-h)^{2}}}{R}=\frac{\sqrt{2 R h-h^{2}}}{R}=\frac{\sqrt{h(2 R-h)}}{R} \\
\text { For small } q, 2 R \gg h \\
\sin \theta=\theta
\end{array} \\
& \text { This agrees with the solution } \\
& \mathbf{A}=\sqrt{\frac{\sqrt{h(2 R-h}}{R}}=\frac{\sqrt{h(2 R)}}{R}=\sqrt{\frac{2 h}{R}} \\
& \theta=A \sin (2 \pi f t+\phi) \quad f=\frac{1}{2 \pi} \sqrt{\frac{g}{R}}
\end{aligned}
$$

$$
-r M g \theta=1 \frac{d^{2} \theta}{d t^{2}} \quad \text { for small angles }
$$

guess periodic solution as
$\theta=A \cos (2 \pi \mathrm{ft}+\phi)$
$\frac{d \theta}{d t}=-A \sin (2 \pi f t+\phi) 2 \pi f$
$\frac{d^{2} \theta}{d t^{2}}=-A \cos (2 \pi f t+\phi)(2 \pi f)^{2}$
$-r M g A \cos (2 \pi f t+\phi)=-I A \cos (2 \pi f t+\phi)(2 \pi f)^{2}$
$\mathrm{rMg}=\mathrm{I}(2 \pi \mathrm{f})^{2}$
$f=1 / T$
$\frac{1}{2 \pi} \sqrt{\frac{\mathrm{rMg}}{\mathrm{I}}}=\mathrm{f}$
Find I
Find I for ring about center of mass Use that to find I about axis of rotation

As in lab determine the motion of the object
Glider on airtrack connected to two springs as an example

At equilibrium

Displace from equilibrium and release

Know:
mass of glider : m_{g}
spring constant of each spring : k_{1}, k_{2}
Question
What is position of glider as a function of time?

Periodic solution- not obvious
$\left(k_{1}+k_{2}\right) x^{2}+m\left(\frac{d x}{d t}\right)^{2}-\left(k_{1}+k_{2}\right) x_{0}^{2}=0$

$$
\mathbf{x}=\mathbf{A} \cos (\mathrm{bt}+\phi)
$$

$\cos (b t+\phi)$ repeats in one period
$\boldsymbol{\operatorname { c o s }}(\mathbf{b} \mathbf{t}+\phi)=\boldsymbol{\operatorname { c o s }}(\mathbf{b}(\mathbf{t}+\mathbf{T})+\phi)$
$b t+\phi+\mathbf{2 t}=b t+b T+\phi$
$2 \pi=b T$
$b=\frac{2 \pi}{T}$
$b=2 \pi f$
$\frac{d x}{d t}=-A \sin (b t+\phi)$
$\left(k_{1}+k_{2}\right)(A \cos (b t+\phi))^{2}+m(-A \sin (b t+\phi) b)^{\mathbf{2}}$ $-\left(k_{1}+k_{2}\right) \mathbf{x}_{0}^{2}=0$

$\sqrt{\frac{\left(k_{1}+k_{2}\right)}{m}}=\mathrm{b}$
$\frac{1}{2 \pi} \cdot \sqrt{\frac{\left(k_{1}+\mathbf{k}_{2}\right)}{m}}=1$
same as with force approach !!
Time independent part of equation $\begin{aligned} & m A^{2} b^{2}=\left(k_{1}+k_{2}\right) x_{0}^{2} \\ & m A^{2} \frac{\left(k_{1}+k_{2}\right)}{m}=\left(k_{1}+k_{2}\right) x_{0}^{2} \end{aligned}$
$\mathrm{A}=\mathrm{x}_{0} \quad$ You knew that
solution to energy equation: $x=x_{0} \cos (2 \pi f t+\phi)$
What about ϕ ?
$\begin{aligned} & \text { At } t=0, x=x_{0} \\ & x_{0}=x_{0} \cos (0+\phi) \end{aligned}$
$\chi=\mathrm{x}_{0} \cos (2 \pi \mathrm{ft}) \quad \phi=0$

