This week in Physics
Begin oscillations (Chap. 14)

So far
Interaction of objects to predict their
Center of mass motion
Objects as "point" particles
Rotational motion "rigid" bodies
Objects as "
Now to get closer to real objects
Vibrational motion
Objects as oscillators
What do you know about oscillations
Strike something (interaction)
It vibrates
Periodic motion
Back and forth
Up and down
In and out

Structures have a"Natural" frequency
Bell
Guitar strin
Spring
Molecules
Electric circuit
Bridge
For concreteness
Think of spring
Experience in your lab

How to describe the oscillation
Size of oscillation Amplitude

Time for repetition of oscillation Period
or
Frequency $=1 /$ period

```
Feature of interaction which yields oscillations
Repeat motion means
        non-constant acceleration
            (cannot use constant
            acceleration kinematics!!
        need calculus
Requires non-constant forces
    Forces which change with position
        Spring force is -kx
    Mathematical description of position
        Functions that repeat
            sin}\mathrm{ (something)
            cos(something)
    For example:
        y = A sin (something)
```

Exploring the math of periodic functions
to describe position of oscillating object
Block on end of spring
$\mathbf{y}=\mathbf{A} \boldsymbol{\operatorname { s i n }}$ (something)
What is the " A " doing?
Maximum size of sin (something)?
1
"A" needed to give maximum size of
scillation
Amplitude
What is the "something"doing?
Position varies with time
something" is a function of time
For sin (something) to make sense
something cannot have units
for example "something" could be
bt
units of b
1/sec
bt in radians
$y=A \sin (b t)$ is a possible function
to describe the position of an oscillating object.

Position repeats
$y=A \sin (b t+c)$ would also work

What does this mathematics have to do with reality?

Motion of object attached to spring. Forces

> Target: $x(t)$
> $\left(k_{1}+k_{2}\right) x=-m_{g} \frac{d^{2} x}{d t^{2}}$
solve for x
Guess and plug it in to check
Method I (physical insight)
I know motion goes back and forth Periodic

Try a sin (something) function $\mathrm{x}=\mathrm{A} \sin (\mathrm{bt}+\mathrm{c})$

Method II (math insight)

What function has the same form as its second derivative?

Try a sin (something) function $x=A \sin (b t+c)$

$\frac{d x}{d t}=A \cos (b t+c) b$
$\frac{d^{2} x}{d t^{2}}=-A \sin (b t+c) b^{2}$
$\left(k_{1}+k_{2}\right) A \sin (b t+c)=-m_{g}\left(-A \sin (b t+c) b^{2}\right)$
$\left(k_{1}+k_{2}\right) A \sin (b t+c)=m_{g}\left(A \sin (b t+c) b^{2}\right)$
Is this equation correct?
ok if
$\left(k_{1}+k_{2}\right)=b^{2} m_{g}$
$\frac{\left(k_{1}+k_{2}\right)}{m_{g}}=b^{2}$
$\sqrt{\frac{\left(k_{1}+k_{2}\right)}{m_{g}}}=b$

$$
\begin{aligned}
& \text { check units } \\
& x=A \sin (b t+c) \\
& \text { units of } b \text { should be } 1 / \mathrm{s}
\end{aligned}
$$

$x=A \sin (b t+c)$
What is the physical meaning of
A
b
Since the maximum value of $\sin (b t+c)=1$
maximum value of $x=A$
A is the maximum displacement of the
glider from the equilibrium position.
If its initial displacement is x_{0}
and its initial velocity is 0
$A=x_{0}$
c tells displacement at $t=0$
If $t=0$ is at time of release of glider
from its initial displacement
$x(t=0)=A$
$x=A$ sin $(b t+c)$
$x_{0}=A \sin (0+c)$

$x_{0}=x_{0} \sin (c)$
$1=\sin (c)$
$c=\pi / 2$

The value of A and c depend on the
specific circumstances of the situation
Initial conditions
A is called Amplitude
c is called phase (usually ϕ)
The value of b depends on the forces
What is the physical significance of $b ?$
$x=A \sin (b t+\phi)$
x repeats after one period
x at $(t=0)=x$ at $(t=T)$
x at $(t=0)=A \sin (\phi)$
x at $(t=T)=A$ sin $(b T+\phi)$
A $\sin (c)=A \sin (b T+\phi)$

$$
\begin{gathered}
\sin (\phi)=\sin (b T+\phi) \\
\sin (\text { something) repeats after } 2 \pi \\
\phi+2 \pi=b T+\phi \\
2 \pi=b T \\
b=\frac{2 \pi}{T} \\
\frac{1}{T} \text { is the frequency } \\
b=2 \pi f \\
b \text { gives the oscillation frequency } \\
\sqrt{\frac{\left(k_{1}+\mathbf{k}_{2}\right)}{m_{g}}}=b
\end{gathered}
$$

Depends only on spring constants and mass of glider

Independent of amplitude and phase Initial conditions How you started it going

| How to solve for the vibrational motion of
 and object. |
| :--- | :--- |
| 1. Write down Newton's second law
 for that object.
 Useful picture
 Free body and force diagrams
 2. Guess the solution to that force equ.
 Three constants
 amplitude, frequency, phase |
| 3. Chemple:
 force equation
 Gives the frequency
 In your lab, you hang an object from two
 springs each with a different spring
 constant. Each spring has one end
 connected to a stand and the other end
 connected to the object. Determine how
 the spring constants are related to the
 frequency of oscillation of the object. |
| 4. Check to see if guess satisfies |
| initial conditions. |
| Gives amplitude and phase. |\quad| |
| :--- |

$-\left(k_{1}+k_{2}\right) y-m g=m \frac{d^{2} y}{d t^{2}}$
Solution: $y=A \cos (2 s f f+\phi)+d$
Target: f
Find f
$\frac{d y}{d t}=-A \sin (2 \pi f t+\phi) 2 \pi f$
$\frac{d^{2} y}{d t^{2}}=-A \cos (2 \pi f t+\phi)(2 \pi f)^{2}$
$-\left(k_{1}+k_{2}\right)(A \cos (2 \pi f t+\phi)+d)-m g=$
$\quad-m A \cos (2 \pi f t+\phi)(2 \pi f)^{2}$
$\quad 0 k$ if $-\left(k_{1}+k_{2}\right) d=m g$
$-\left(k_{1}+k_{2}\right)(A \cos (2 \pi f t+\phi))=$
$-m A \cos (2 \pi f t+\phi)(2 \pi f)^{2}$
$-\left(k_{1}+k_{2}\right)=-m(2 \pi f)^{2}$
$\frac{\left(k_{1}+k_{2}\right)}{m}=(2 \pi f)^{2}$
$\frac{1}{2 \pi} \sqrt{\frac{\left(k_{1}+k_{2}\right)}{m}}=f$
check units:
Compare with frequency for single spring
$k_{1}=k$
$k_{2}=0$
$\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=f$
Equivalent behavior if
$k=k_{1}+k_{2}$

