This Week
Continue describing interactions from the viewpoint of CONSERVATION
Conservation of Energy - a scalar
$\mathbf{E}_{\text {final }}-\mathbf{E}_{\text {initial }}=\mathbf{E}_{\text {input }}-\mathbf{E}_{\text {outpu }}$
$\Delta \mathbf{E}_{\text {system }}=\Delta \mathbf{E}_{\text {transfer }}$
$\begin{gathered} \mathbf{E}_{\text {system }}=\mathbf{K E}+\mathbf{P E} \quad \mathbf{E}_{\text {transfer }}=\int_{\text {path }} \overrightarrow{\mathbf{F}} \mathbf{d} \bar{\ell} \\ \text { NEW Theory } \end{gathered}$
Conservation of Momentum - a vector A bit of Chapter 8-8.4, 8.6
Competent Problem Solver Chapter 5 Laboratory 5
New Equations
$\begin{gathered} \overrightarrow{\mathbf{p}}_{\text {final }}-\overline{\mathbf{p}}_{\text {initial }}=\overrightarrow{\mathbf{p}}_{\text {input }}-\overline{\mathbf{p}}_{\text {output }} \\ \Delta \overline{\mathbf{p}}_{\text {system }}=\Delta \overline{\mathbf{p}}_{\text {transfer }} \end{gathered}$
$\overrightarrow{\mathbf{p}}_{\text {system }}=\mathbf{m} \stackrel{\rightharpoonup}{\mathbf{v}} \quad \overrightarrow{\mathbf{p}}_{\text {transfer }}=\iint_{\text {path }}$

Conservation of Energy

$E_{f}-E_{i}=E_{\text {input }}-E_{\text {output }}$
system: both objects
initial energy of system

$$
\mathrm{E}_{\mathrm{i}}=(\mathrm{KE})_{1 i}+(\mathrm{KE})_{2}
$$

final energy of system
$\mathrm{E}_{\mathrm{t}}=(\mathrm{KE})_{1 t}+(\mathrm{KE})_{2}$
energy transfer between initial and final time
No external forces in the direction of velocity

Weight and normal force cannot transfer energy to system

Neglect friction $E_{\text {input }}=0 \quad E_{\text {output }}=0$

Conservation Theory
Conservation of Energy
Useful but not complete
No directional information
Energy is a scalar
Need a vector quantity
Property of vector
perpendicular components are independent
Momentum in x direction $\quad \mathbf{p}_{\mathrm{x}}=\mathbf{m v}_{\mathrm{x}}$
Momentum in y direction $\quad \mathbf{p}_{\mathrm{y}}=\mathbf{m v}_{\mathrm{y}}$
Momentum in \mathbf{z} direction $\quad \mathbf{p}_{\mathrm{z}}=\mathbf{m v}_{\mathbf{z}}$

Conservation of momentum in each direction

 is independent$$
\begin{aligned}
& p_{\text {xfinal }}-p_{\text {xinitial }}=p_{\text {xinput }}-p_{\text {xoutput }} \\
& p_{\text {yfinal }}-p_{\text {yinitial }}=p_{\text {yinput }}-p_{\text {youtput }} \\
& p_{\text {zfinal }}-p_{\text {zinitial }}=p_{\text {zinput }}-p_{\text {zoutput }} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& E_{t}-E_{i}=E_{\text {input }}-E_{\text {output }} \\
& (1 / 2) m v_{t}^{2}+(1 / 2) m v_{t}^{2}-(1 / 2) m v_{i}^{2}-(1 / 2) m v_{i}^{2}=0 \\
& v_{t}^{2}+v_{t}^{2}-v_{i}^{2}-v_{i}^{2}=0 \\
& 2 v_{t}^{2}=2 v_{i}^{2} \\
& v_{t}=v_{i} \\
& \text { or } \\
& v_{t}=-v_{i}
\end{aligned}
$$

Conservation of energy gives two possibilities!

What does this mean? Is something wrong with the theory of Conservation of Energy?

Test this prediction

Results
Conservation of Energy for 2 object system
predicts
$v_{t}=v_{i} \quad$ or $\quad v_{t}=-v_{i}$
We observe $\quad v_{t}=0$
Either the theory of conservation of energy
is wrong or
we have not identified all of the terms in the
conservation of energy equation
Could there be any energy transfer?
The discrepancy is large
No large interactions with other objects
that are not accounted for
Could there be a system energy different from
Kinetic Energy
Potential Energy

	The objects in our system are not really single objects Internal Structure Internal parts have energy Kinetic Energy Potential Energy
	Energy of the system of two objects = $\begin{aligned} & \mathrm{KE}_{1}+\mathrm{KE}_{2}+\mathrm{PE}_{12} \\ & + \text { internal } \mathrm{KE}_{1}+\text { internal } \mathrm{PE}_{1} \\ & \text { + internal } \mathrm{KE}_{2}+\text { internal } \mathrm{PE}_{2} \end{aligned}$
	Conservation of Energy $\begin{aligned} E_{f}-E_{i} & =E_{\text {input }}-E_{\text {output }} \\ E_{i} & =K E_{i}+P E_{i}+I E_{i} \\ E_{f} & =K E_{f}+P E_{f}+I E_{f} \end{aligned}$
	To use conservation of energy you must know how the internal energy of your system changes

A Vector Theory

 Suppose an interaction changesthe internal energy of a system

For example a collision that increases the motion of the molecules

Velocity of the molecules is in random directions

Energy is a scaler
It all adds up
If the quantity conserved were a vector Velocity in opposite directions would cancel

No effect of random internal motion changes

Invent a new vector quantity to conserve Test to see if it describes the real world

The change of the internal energy $\left(\Delta \mathrm{E}_{\mathrm{j}}\right)$ equals $89 \%(8 / 9)$ of the initial kinetic energy

Large change of internal energy when
objects stick together
Theories conservation theories to explain
everything (so far)
Conservation of Energy
$\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\text {input }}-\mathrm{E}_{\text {output }}$

$$
\begin{aligned}
& \Delta \mathrm{E}_{\text {system }}=\Delta \mathrm{E}_{\text {transter }} \\
& \mathrm{E}_{\text {system }}\left(\mathrm{E}_{\mathrm{i}} \text { and } \mathrm{E}^{\prime}\right)=\mathrm{KE}+\mathbf{P E}+\mathrm{IE} \\
& \mathrm{E}_{\text {transter }}\left(\mathrm{E}_{\text {input }} \text { and } \mathrm{E}_{\text {ouput }}\right)=\int_{\text {path }} \dot{\mathrm{F}} \bullet \mathbf{d} \dot{I}
\end{aligned}
$$

Energy is a scalar (no direction)
Conservation of Momentum

$$
\begin{aligned}
\overline{\mathbf{p}_{\mathrm{t}}}-\overline{\mathbf{p}_{\mathrm{i}}} & =\overline{\mathbf{p}}_{\text {input }}-\overline{\mathbf{p}}_{\text {output }} \\
\Delta \overline{\mathbf{p}_{\text {system }}} & =\overline{\mathbf{p}_{\text {transter }}}
\end{aligned}
$$

means
$p_{1 \mathrm{x}}-\mathbf{p}_{\mathrm{ix}}=\mathbf{p}_{\text {transter }}$
$p_{z}-p_{k}=p_{\text {transter }}$
$p_{\text {systemx }}\left(p_{\mathrm{x}}\right.$ and $\left.\mathrm{p}_{\mathrm{ix}}\right)=\Sigma \mathrm{m} \mathrm{v}_{\mathrm{x}}$
$p_{\text {transter } x}\left(\boldsymbol{p}_{\text {inputx }}\right.$ and $\left.p_{\text {outputx }}\right)=$?
Momentum is a vector (has direction)

$\underset{\text { beginning }}{\text { end }} \overrightarrow{\mathrm{F}}^{\text {ent }} \overrightarrow{\mathbf{p}}_{\mathrm{f}}-\overrightarrow{\mathbf{p}}_{\mathbf{i}}=\Delta \overline{\mathbf{p}}_{\text {system }}$
Conservation of momentum:
$\Delta \overline{\mathrm{p}}_{\text {system }}=\Delta \overline{\mathrm{p}}_{\text {transfer }}$
$\overrightarrow{\mathbf{p}}_{\mathrm{f}}-\overrightarrow{\mathbf{p}}_{\mathbf{i}}=\overrightarrow{\mathbf{p}}_{\text {output }}$
Since in this case:
$\underbrace{\text { end }}_{\text {beginning }} \overrightarrow{\text { dtt }}=\Delta \overrightarrow{\mathbf{p}}_{\text {system }}$
$\int_{\text {beginning }}^{\text {end }} \overrightarrow{\mathbf{F}}_{\text {dt }}=\overline{\mathbf{p}}_{\text {output }}$
Momentum is transferred to a system by an external force on that system acting over a time interval

Direction of momentum transfer is in the direction of that force.

Because momentum is a vector
An external force in one direction (y) does not effect the momentum in a perpendicular direction (\mathbf{x}).
$\int_{\text {beginning }}^{\text {end }} \mathbf{F}_{\mathbf{x}} \mathbf{d t}=\mathbf{p}_{\mathrm{x}}$ transfer
$\int_{\text {beginning }}^{\text {end }} \mathbf{F}_{\mathbf{y}} \mathbf{d t}=\mathbf{p}_{\mathrm{y} \text { transfer }}$

```
Compare Momentum Transfer
    and Energy Transfer
Momentum Transfer
fbeginning
Momentum is transferred to a system by an external force on that system acting over time
All external forces on a system transfer momentum to or from it.
```


Energy Transfer

```
\[
\underset{\text { path }}{\int \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \vec{\ell}=\mathbf{E}_{\text {transfer }}}
\]
Energy is transferred to a system by
an external force on that system acting over a distance
An external force perpendicular to the velocity does not transfer energy.
```

Types of Interactions
Internal Energy Does not Change
Called an ELASTIC interaction

Very rare

Mostly an approximation

How good?

Your laboratory measurements
Both conservation of energy and conservation of momentum are useful Internal Energy Changes

Called an INELASTIC interaction
Usually only conservation of momentum is useful

Internal energy change shows up as
Temperature change
Shape change
Form change
argest internal energy change if objects stick logether - PERFECTLY INELASTIC interaction

Example

To determine the muzzle velocity of a bullet fired by a rifle, you shoot the 2.0 gm bullet into a 2.0 kg wooden block. The block is
suspended by wires from the ceiling and it
initially at rest. After the bullet is embedded
in the block, the block swings up to a
maximum height 0.5 cm above its initial position

Initial time
Question: What is the speed of the bullet
when fired?
Approach:
Try conservation of energy:
System: bullet, block, Earth
System energy: KE, GPE, IE
Initial time: just before bullet enters block
Final time: block at highest point
External forces on system
Force of wires - perpendicular to path
No energy transfer

Neither conservation of energy
nor
conservation of momentum is useful
For the entire event
Wrong initial time
Wrong final time
Wrong system
Need to make some decisions
Is conservation of energy useful
for part of the event?
What time interval? What system?
the internal energy of the
system is not changing
there is no energy transfer
Is conservation of momentum useful
for part of the event?
What time interval? What system?
there is no momentum transfer

$\frac{\left(m_{\text {block }}+m_{\text {bullet }}\right) \sqrt{2 g y_{f}}}{\mathbf{m}_{\text {bullet }}}=v_{\text {bullet }}$
Any algebra mistakes?
check units
Since we have mass units in numerato and denominator

Check
Question Answered? the speed of the bullet
leaving the gun is the same as its speed just
before it enters the block.
The units of speed are correct (m / s)
Reasonable?
Bullets travel at about the speed of sound
speed of sound approximately $1100 \mathrm{ft} / \mathrm{s}$
$\quad 3 \mathrm{ft}$ is about 1 m
Vbulet $=930 \mathrm{ft} / \mathrm{s}$
seems to be about as expected

Now we could find the change in internal energy of the system (probably signaled by a
rise in temperature of the bullet and block).
Use Conservation of Energy
$\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\text {input }}-\mathrm{E}_{\text {output }}$
System: bullet, block, Earth
initial time

We now know

KE of system before bullet enters block KE of system when block swings to maximum height
-Change in PE over this time interval

$$
\begin{aligned}
& E_{i}=K E_{i}+P E_{i}+I E_{i} \quad E_{\text {input }}=0 \\
& E_{t}=K E_{t}+P E_{t}+I E_{t} \quad E_{\text {output }}=0 \\
&\left(m_{\text {block }}+m_{\text {bullet }}\right) g y_{f}+I E_{f}-\left(\frac{1}{2} m_{\text {bullete }} v_{\text {bullet }}^{2}+I E_{i}\right)=
\end{aligned}
$$

$$
\begin{gathered}
\left(\mathbf{m}_{\text {block }}+\mathbf{m}_{\text {bullet }}\right) \mathrm{gy}_{\mathrm{f}}+\mathbf{I E} \mathrm{E}_{\mathrm{f}}-\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{m}_{\text {bullet }} v_{\text {bullet }}^{2}+\mathbf{I E} E_{i}\right)= \\
\mathbf{I E}_{\mathrm{f}}-\mathbf{I E} E_{\mathbf{i}}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{m}_{\text {bullet }} v_{\text {bullet }}^{2}-\left(\mathbf{m}_{\text {block }}+\mathbf{m}_{\text {bullet }}\right) \mathbf{g \mathbf { y } _ { \mathrm { f } }} \\
\Delta \mathbf{I E}=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{m}_{\text {bullet }} \mathbf{v}_{\text {bullet }}^{2}-\left(\mathbf{m}_{\text {block }}+\mathbf{m}_{\text {bullet }}\right) \mathbf{g y _ { f }}
\end{gathered}
$$

$\Delta I E=(1 / 2)(.002 \mathrm{~kg})(310 \mathrm{~m} / \mathrm{s})^{2}$

- $(2.002 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(.005 \mathrm{~m})$
$\Delta I E=96 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}-0.10 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}$
Note that $\Delta K E \gg \Delta P E$
Almost all of the bullet's original KE goes into internal energy of the system
$\Delta I E=95.9 \mathrm{~m} \mathrm{~kg} \mathrm{~m} / \mathrm{s}_{2}=95.9 \mathrm{~m} \mathrm{~N}=95.9 \mathrm{~J}$
To what height would this energy lift the block (2 kg)?

Question:
What is the maximum height of girl+Bond? Approach:

Inelastic collision - internal energy o girl+Bond changes during the collision Don't use conservation of energy from beginning to end. (Don't know the change of internal energy)
Don't use conservation of momentum from beginning to end. (Don't know momentum transfer
Use conservation of energy before collision frictionless skis --no energy transfer Bond, Earth system Use conservation of momentum from just before collision to just after collision. Use conservation of energy after collision

Example
Because of your physics background, you have been chosen as a technical advisor for ew James Bond movie. In this scene, Bond and his partner, who is $2 / 3$ his weight and his partner, who is $2 / 3$ his weight
including skis, boots, clothes, and various (hidden weapons), are skiing in the Alps. She
hid goes on ahead down a slope while he stays at goes on ahead down a slope while he stays at vertical distance of 100 ft , she stops to wait or him and is captured by the bad guys. Bond notices that she is standing with her skis oointed downhill resting on her poles. To make as little noise as possible, he starts rom rest and glides down the slope right at her. He grabs her and they both continue gliding downhiil together. At the bottom of he hill another slope goes uphill and they continue gliding, hand-in-hand, up that slope until hey reach the top of another hill and are safe. What is the maximum possible height hat the second hili? Both Bond and his partner are using new frictionless stealth skis developed for the British Secret Service by Q

Find y_{2} From time interval III $y_{2}=[1 /(2 g)] v_{c}{ }^{2}$ Find y_{c} From time interval II $v_{c}=(3 / 5) v_{B}$ Find y_{B} From time interval I $v_{B}^{2}=2 g y_{1}$ $y_{2}=[1 /(2 g)](9 / 25) 2 g$ y_{1} $y_{2}=(9 / 25) y_{1}$ It is less than (3/5) y_{1} $y_{2}=36 \mathrm{ft}$

