

Conservation of Energy					
Ef - Ei = Einput - Eoutput					
system: both objects					
initial energy of system					
E _i = (KE) _{1i} + (KE) _{2i}					
final energy of system					
$E_f = (KE)_{1f} + (KE)_{2f}$					
energy transfer between initial and final time					
No external forces in the direction of velocity					
Weight and normal force cannot transfer energy to system					
Neglect friction					
$E_{input} = 0$ $E_{output} = 0$					

	Conservation Theory
Conservation of Energy	
ι	Jseful but not complete
	No directional information
	Energy is a scalar
	Need a vector quantity
Prop	erty of vector
ре	rpendicular components are independent
	Momentum in x direction $p_x = mv_x$
	Momentum in y direction $p_y = mv_y$
	Momentum in z direction $p_z = mv_z$
	servation of momentum in each direction dependent
	$p_{xfinal} - p_{xinitial} = p_{xinput} - p_{xoutput}$
$p_{yfinal} - p_{yinitial} = p_{yinput} - p_{youtput}$	
	$\mathbf{p}_{z_{final}} - \mathbf{p}_{z_{initial}} = \mathbf{p}_{z_{input}} - \mathbf{p}_{z_{output}}$

Er - Ei = Einput - Eoutput			
$(1/2) mv_{f}^{2} + (1/2) mv_{f}^{2} - (1/2) mv_{i}^{2} - (1/2) mv_{i}^{2} = 0$			
$v_{f}^{2} + v_{f}^{2} - v_{i}^{2} - v_{i}^{2} = 0$			
2 v_f^2 = 2 v_i^2			
Vr = Vi			
or			
$V_f = -V_i$			
Conservation of energy gives two possibilities!			
What does this mean?			
Is something wrong with the theory of Conservation of Energy?			
Test this prediction			

Results
Conservation of Energy for 2 object system predicts
$V_f = V_i$ or $V_f = -V_i$
We observe
$v_f = 0$
Either the theory of conservation of energy is wrong
or
we have not identified all of the terms in the conservation of energy equation
Could there be any energy transfer?
The discrepancy is large
No large interactions with other objects that are not accounted for
Could there be a system energy different from
Kinetic Energy
Potential Energy

Apply Conservation of Momentum to This Interaction		
initial time	final time	
Vi Vi	Vf	
1 2	1 2	
+X	+X	
System: both objects		
Initial system momentum is the sum of the momentum of each object before the collision		
$\mathbf{p}_{ix} = \mathbf{m}\mathbf{v}_{ix} + \mathbf{m}(-\mathbf{v}_{ix})$		
Final system momentum is the sum of the momentum of each object after the collision		
p _{fx} = mv	$r_{fx} + mv_{fx} = 2mv_{fx}$	
No external interactions in x direction. Interactions with air (friction and sound can be ignored)		
$\mathbf{n}_{transform} = 0$		

p_{transferx} = 0

Calculate the internal energy change

Large change of internal energy

Internal Energy Change initial time final time Vi Vi vf = (1/3)v i 2 +x 1 2 +x 1 Conservation of energy E_f - E_i = E_{input} - E_{outpu} System both objects $E_i = KE_i + IE_i$ $E_f = KE_f + IE_f$ $E_{transfer} = 0$ $\frac{1}{2}(3m)\frac{a\underline{d}}{\dot{e}_3}v_i\frac{\dot{o}^2}{\sigma} + IE_f - \frac{a\underline{d}}{\dot{e}_2}(3m)v_i^2 + IE_i\frac{\ddot{o}}{\sigma} = 0$ $IE_{f} - IE_{i} = \frac{1}{2}(3m)v_{i}^{2} - \frac{1}{2}(3m)\frac{1}{9}v_{i}^{2}$ $IE_f - IE_i = \frac{8}{2} \frac{a^2}{a^2} (3m) v_i^2 \ddot{o}$ The change of the internal energy (DE;) equals 89% (8/9) of the initial kinetic energy Large change of internal energy when objects stick together

Conservation Theories Two conservation theories to explain everything (so far). Conservation of Energy $E_{f} - E_{i} = E_{input} - E_{output}$ $DE_{system} = DE_{transfer}$ E_{system} (E _i and E _i) = KE + PE + IE $E_{transfer}$ (Einput and E_{output}) = $\hat{\phi}_{adh}$ $\dot{F} \cdot d\dot{l}$ Energy is a scalar (no direction) Conservation of Momentum $p_{i} - p_{i} = p_{input} - p_{output}$ $Dp_{system} = Dp_{transfer}$ means $p_{tx} - p_{k} = p_{transferz}$ $p_{iy} - p_{iy} = p_{transferz}$ $p_{ix} - p_{k} = p_{transferz}$ $p_{ix} - p_{k} = p_{transferz}$ $p_{transferz}$ (p_{inputx} and $p_{outputx}$) = S means $p_{tx} - p_{k} = p_{transferz}$ $p_{ix} e_{jk} = (p_{inputx} and p_{outputx}) = S$			
$\begin{array}{l} \textbf{DE}_{system} = \textbf{DE}_{transfer} \\ \textbf{E}_{system} (\textbf{E}_i \mbox{ and } \textbf{E}_i) = K\textbf{E} + \textbf{PE} + \textbf{IE} \\ \textbf{E}_{transfer} (\textbf{E}_{input} \mbox{ and } \textbf{E}_{output}) = \dot{\textbf{p}}_{stath} \ \dot{\textbf{F}} \cdot d\vec{\textbf{I}} \\ \textbf{Energy is a scalar (no direction)} \\ \hline \textbf{Conservation of Momentum} \\ \hline \textbf{p}_i - \textbf{p}_i = \textbf{p}_{input} - \textbf{p}_{output} \\ \hline \textbf{Dp}_{system} = \textbf{D}_{transfer} \\ \textbf{means} \\ \textbf{p}_{tx} - \textbf{p}_k = \textbf{p}_{transfer} \\ \textbf{p}_{ty} - \textbf{p}_k = \textbf{p}_{transferz} \\ \textbf{p}_{ty} - \textbf{p}_k = \textbf{p}_{transferz} \\ \textbf{p}_{systemx} (\textbf{p}_k \mbox{ and } \textbf{p}_x) = \textbf{S} \mbox{ m} \ \textbf{v}_x \\ \textbf{p}_{transferx} (\textbf{p}_{inputx} \mbox{ and } \textbf{p}_{outputx}) = ? \end{array}$	Two conservation theories to explain everything (so far).		
$ \begin{array}{l} E_{system}\left(E_{i} \text{ and } E_{i}\right) = KE + PE + IE \\ E_{transfer}\left(E_{input} \text{ and } E_{output}\right) = \hat{q}_{ath} \ \dot{F} \cdot d\dot{I} \\ \hline \\ $	$E_f - E_i = E_{input} - E_{output}$		
$ \begin{array}{c} E_{transfer} \left(E_{input} \ and \ E_{output} \ \right) = \grave{\varphi}_{tath} \ \dot{F} \cdot d\dot{I} \\ \hline \\ Energy \ is \ a \ scalar \ (no \ direction) \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	DE system = DE transfer		
Energy is a scalar (no direction) Conservation of Momentum pr - pi = pinput - pouput Desystem =Dpransfer means ptx - pk = ptransfer x pty - pk = ptransfer z psystemx (pk and ptx) = S m vx ptransfer x (pinputx and poutputx) = ?	$E_{system}(E_i \text{ and } E_i) = KE + PE + IE$		
Conservation of Momentum pr - pi = pinput - pouput Dpsystem =Dptransfer means ptx - pbx = ptransfer x piy - pby = ptransfer z psystemx (pk and prx) = S m vx ptransfer x (pinputx and poutputx) = ?	E_{transfer} (Einput and Eoutput) = $\dot{\phi}_{\text{ath}} \dot{F} \cdot d$		
$ \begin{array}{c} \hline p_{t} - \overline{p_{t}} = \overline{p_{input}} - \overline{p_{output}} \\ \hline D\overline{p_{system}} = D\overline{p_{transfer}} \\ means \\ p_{tx} - p_{k} = p_{transfer x} \\ p_{ty} - p_{y} = p_{transfer y} \\ p_{tz} - p_{k} = p_{transfer z} \\ p_{system x} (p_{k} \ and \ p_{rx}) = S \ m \ v_{x} \\ p_{transfer x} (p_{inputx} \ and \ p_{outputx}) = ? \end{array} $	Energy is a scalar (no direction)		
$\label{eq:product} \begin{array}{l} \overline{\textbf{Dp}_{system}} = \overline{\textbf{Dp}_{transfer}} \\ \hline \textbf{means} \\ p_{fx} - p_{k} = p_{transfer x} \\ p_{fy} - p_{\psi} = p_{transfer y} \\ p_{fz} - p_{iz} = p_{transfer z} \\ p_{system x} \left(p_{k} \text{ and } p_{fx}\right) = S \ m \ v_{x} \\ p_{transfer x} \left(p_{inputx} \ and \ p_{outputx}\right) = ? \end{array}$	Conservation of Momentum		
$ \begin{array}{l} \mbox{means} \\ p_{tx} - p_{k} = p_{transfer x} \\ p_{ty} - p_{y} = p_{transfer y} \\ p_{tz} - p_{k} = p_{transfer z} \\ p_{system x} (p_{k} \mbox{ and } p_{tx}) = S \mbox{ m v}_{x} \\ p_{transfer x} (p_{inputx} \mbox{ and } p_{outputx}) = ? \end{array} $	$\overline{\mathbf{p}_{f}} - \overline{\mathbf{p}_{i}} = \overline{\mathbf{p}_{input}} - \overline{\mathbf{p}_{output}}$		
$p_{tx} - p_{kx} = p_{transfer x}$ $p_{ty} - p_{ty} = p_{transfer y}$ $p_{tz} - p_{lz} = p_{transfer z}$ $p_{system x} (p_{tx} and p_{tx}) = S m v_{x}$ $p_{transfer x} (p_{inputx} and p_{outputx}) = ?$	Dpsystem =Dptransfer		
$\begin{array}{l} p_{ty} = p_{ty} = p_{transfery} \\ p_{tz} = p_{tz} = p_{transferz} \\ p_{systemx} \left(p_{k} \text{ and } p_{rx} \right) = S \ m \ v_{x} \\ p_{transferx} \left(p_{inputx} \text{ and } p_{outputx} \right) = ? \end{array}$	means		
ptz - ptz = ptransferz p _{systemx} (p _k and p _{fx}) = S m v _x ptransfer x (pinputx and poutputx) = ?	$\mathbf{p}_{fx} - \mathbf{p}_{ix} = \mathbf{p}_{transfer x}$		
$p_{systemx}$ (p_k and p_{fx}) = S m v _x p _{transfer x} (p_{inputx} and $p_{outputx}$) = ?	$\mathbf{p}_{\text{fy}} - \mathbf{p}_{\text{iy}} = \mathbf{p}_{\text{transfer y}}$		
p _{transfer x} (p _{inputx} and p _{outputx}) = ?	pfz -piz =ptransferz		
	$p_{systemx}$ (p_{ix} and p_{fx}) = S m v_x		
Momentum is a vector (has direction)	$p_{transfer x}$ (pinputx and $p_{outputx}$) = ?		
	Momentum is a vector (has direction)		

Compare Momentum Transfer and Energy Transfer

Momentum Transfer

 $\hat{\mathbf{\Theta}}_{eginning}^{end} \vec{\mathbf{F}} dt = \vec{p}_{transfer}$

Momentum is transferred to a system by an external force on that system acting over time

All external forces on a system transfer momentum to or from it.

Energy Transfer

$$\partial \vec{F} \cdot d \vec{\ell} = E_{transfer}$$

Energy is transferred to a system by

an external force on that system acting over a distance

An external force perpendicular to the velocity does not transfer energy.

Example

To determine the muzzle velocity of a bullet fired by a rifle, you shoot the 2.0 gm bullet into a 2.0 kg wooden block. The block is suspended by wires from the ceiling and it initially at rest. After the bullet is embedded in the block, the block swings up to a maximum height 0.5 cm above its initial position.

Example Because of your physics background, you have been chosen as a technical advisor for a new James Bond movie. In this scene, Bond and his partner, who is 2/3 his weight (including skis, boots, clothes, and various hidden weapons), are skiing in the Alps. She goes on ahead down a slope while he stays at

hidden weapons), are skiing in the Alps. She goes on ahead down a slope while he stavs at the top to adjust his boot. After skiing down a vertical distance of 100 ft, she stops to wait for him and is captured by the bad guys. Bond notices that she is standing with her skis pointed downhill resting on her poles. To make as little noise as possible, he starts from rest and glides down the slope right at her. He grabs her and they both continue gliding downhill together. At the bottom of the hill another slope goes uphill and they continue gliding, hand in hand, up that slope until they reach the top of another hill and are safe. What is the maximum possible height that the second hill? Both Bond and his partner are using new frictionless stealth skis developed for the British Secret Service by Q

Can not easily use conservation of energy or conservation of momentum from beginning situation to end situation.		
Break problem into 3 time intervals		
Time interval I		
Conservation of energy: system Bond + Earth		
Ei = PE₃ = m₃ g y₁	E _{transfer} = 0	
$E_{f} = KE_{B} = (1/2) m_{B} v_{B}^{2}$	D IE = 0	
(1/2) m _B v _B ² - m _B g y₁ = 0		
$v_B^2 = 2 g y_1$		

Time interval II			
Cons. of momentum: system Bond+ girl			
р⊨ = mв vв pғ = (mв + mց) vс	p _{transfer} = 0		
(mв + mց) vс - mв vв = 0			
$v_{c} = v_{B} [m_{B} / (m_{B} + m_{c})]$			
since W _G = (2/3) W _В m _G = (2/3) m _В			
Vc = (3/5) VB			
Time interval III			
Cons. of energ	y: system Bond+girl+Earth		
$E_i = KE_{(B+G)} = (1/2) (m_B + m_G) v_c^2$			
$E_{f} = PE_{(B+G)} = (m_{B} + m_{G}) g y_{2}$			
E _{transfer} = 0	$\mathbf{D}\mathbf{E} = 0$		
(m₅ + m₅) g y₂ - (1/2	!) (m₅ + m₅) vc² = 0		
y ₂ = [1/(2g)] v	2 C		

