Problem 2.

What is the smallest coefficient of static friction that will give the frictional force necessary for the car to travel in a circle with a radius of 0.05 mi ?

Approach: Use Newton's $2^{\text {nd }}$ Law to relate the forces on the car to its acceleration and mass.
The car travels with uniform circular motion so its acceleration is $\mathrm{v}^{2} / \mathrm{r}$.
Can get the maximum static frictional force from the normal force. That is the largest frictional force for a given coefficient of static friction. Using the maximum static frictional force will give the minimum coefficient of static friction.

Choose a coordinate system with one axis along the radius of the circle (along the acceleration). One axis will be vertical.

Free body diagram of car
$\mathrm{W}=3000 \mathrm{lbs}$

$$
\mathrm{V}=50 \mathrm{mi} / \mathrm{hr}
$$

$$
\mathrm{r}=0.05 \mathrm{mi}
$$

$$
\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{array}{ll}
\sum \mathrm{F}_{\mathrm{x}}=\mathrm{f}_{\mathrm{s}}=\mathrm{ma} & \mathrm{f}_{\mathrm{s}}=\mu_{\mathrm{s}} \mathrm{~F}_{\mathrm{n}} \\
\sum \mathrm{~F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{n}}-\mathrm{W}=0 & \mathrm{a}=\frac{\mathrm{v}^{2}}{\mathrm{r}}
\end{array}
$$

$$
\mathrm{W}=\mathrm{mg}
$$

Target: μ_{s}

Plan
Find μ_{s}
$\mathrm{f}_{\mathrm{s}}=\mu_{\mathrm{s}} \mathrm{F}_{\mathrm{n}}$
Find f_{s}
$f_{s}=m \frac{v^{2}}{r}$
2

3
$\mathrm{W}=\mathrm{mg}$
Find F_{n}
$\mathrm{F}_{\mathrm{n}}-\mathrm{W}=0$
4 unknowns, 4 equations. Ok to solve.
Execute:
[4] $\mathrm{F}_{\mathrm{n}}-\mathrm{W}=0$

$$
\mathrm{F}_{\mathrm{n}}=\mathrm{W} \text { put into } 1
$$

[1] $\mathrm{f}_{\mathrm{s}}=\mu_{\mathrm{s}} \mathrm{W}$
[3] $\mathrm{W}=\mathrm{mg}$
$\frac{\mathrm{W}}{\mathrm{g}}=\mathrm{m}$
put into 2
[2] $\mathrm{f}_{\mathrm{s}}=\frac{\mathrm{W}}{\mathrm{g}} \frac{\mathrm{v}^{2}}{\mathrm{r}}$ put into 1
[1] $\frac{\mathrm{W}}{\mathrm{g}} \frac{\mathrm{v}^{2}}{\mathrm{r}}=\mu_{\mathrm{s}} \mathrm{W}$

$$
\frac{\mathrm{v}^{2}}{\mathrm{rg}}=\mu_{\mathrm{s}}
$$

Check units $\frac{\left[\frac{\mathrm{m}}{\mathrm{s}}\right]^{2}}{[\mathrm{~m}]\left[\frac{\mathrm{m}}{\mathrm{s}^{2}}\right]}=[1] \quad$ correct since μ_{s} has no units
$\frac{\left(50 \frac{\mathrm{mi}}{\mathrm{hr}}\right)^{2}}{(0.05 \mathrm{mi})\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}=\mu_{\mathrm{s}}=5102\left(\frac{(\mathrm{mi})\left(\mathrm{s}^{2}\right)}{(\mathrm{m})\left(\mathrm{hr}^{2}\right)}\right)\left(\frac{\mathrm{hr}}{60 \mathrm{~min}}\right)^{2}\left(\frac{\mathrm{~min}}{60 \mathrm{~s}}\right)^{2}\left(\frac{1000 \mathrm{~m}}{\frac{5}{8} \mathrm{mi}}\right)=0.63$
$\mu_{\mathrm{s}}=0.63$

Evaluate:

If the speed gets larger, it takes a larger coefficient of static friction for the car to get around the corner. This is reasonable since it is more difficult to go around a corner if you go faster.

If the radius of the turn is smaller, it takes a larger coefficient of static friction for the car to get around the corner. This is reasonable since a corner with a smaller radius is a tighter turn.
0.63 is a typical value for coefficient of static friction for surfaces that do not slide easily.

Problem 3

Approach: Perpendicular components of motion are independent.
Horizontal motion: constant velocity
Vertical motion: constant acceleration
Use the definition of velocity and acceleration.

$\cos \theta=\frac{\mathrm{v}_{\mathrm{fy}}}{\mathrm{v}_{\mathrm{f}}}$

Target: v_{0}
Horizontal: $\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{xav}}=\frac{\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{0}}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{0}}=\frac{\mathrm{x}_{\mathrm{f}}}{\mathrm{t}_{\mathrm{f}}}$

$$
\mathrm{v}_{\mathrm{x}}=\mathrm{v}_{\mathrm{fx}}=\mathrm{v}_{\mathrm{ox}}
$$

Vertical: $a=a_{a v}=-g=\frac{-v_{f y}-v_{0 y}}{t_{f}-t_{0}}=\frac{-v_{f y}}{t_{f}}$

$$
\mathrm{y}_{\mathrm{f}}=-\frac{1}{2} \mathrm{~g}\left(\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{0}\right)^{2}+\mathrm{v}_{0 \mathrm{y}}\left(\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{0}\right)+\mathrm{y}_{0}=-\frac{1}{2} \mathrm{~g}\left(\mathrm{t}_{\mathrm{f}}\right)^{2}+\mathrm{y}_{0}=0
$$

Plan
Find v_{0}
$\sin \theta=\frac{v_{\mathrm{ox}}}{\mathrm{v}_{\mathrm{f}}}$
1 unknowns
V_{o}
V_{f}
Find v_{f}
$\cos \theta=\frac{v_{f y}}{v_{f}}$
2
Find $v_{f y}$
$-g=\frac{-v_{f y}}{t_{f}}$
3
t_{f}

Find t_{f}
$\mathrm{v}_{\mathrm{ox}}=\frac{\mathrm{X}_{\mathrm{f}}}{\mathrm{t}_{\mathrm{f}}}$
4
4 unknowns, 4 equations. Ok to solve.

Execute:
[4] $\mathrm{v}_{\mathrm{ox}}=\frac{\mathrm{X}_{\mathrm{f}}}{\mathrm{t}_{\mathrm{f}}}$

$$
\mathrm{t}_{\mathrm{f}}=\frac{\mathrm{x}_{\mathrm{f}}}{\mathrm{v}_{\mathrm{ox}}} \quad \text { put into } 3
$$

[3] $g=\frac{v_{f y}}{x_{f}}$

$$
\mathrm{v}_{\mathrm{ox}}
$$

$$
g \frac{x_{f}}{v_{o x}}=v_{f y}
$$

put into 2
[2] $\cos \theta=\frac{g \frac{x_{f}}{v_{o x}}}{v_{f}}$

$$
\mathrm{v}_{\mathrm{f}}=\frac{\mathrm{g} \frac{\mathrm{x}_{\mathrm{f}}}{\mathrm{v}_{\mathrm{ox}}}}{\cos \theta} \quad \text { put into } 1
$$

[1] $\sin \theta=\frac{\mathrm{v}_{\mathrm{OX}}}{\mathrm{g} \underline{\mathrm{X}_{\mathrm{f}}}}$

$$
\frac{g \frac{x_{\mathrm{f}}}{\mathrm{v}_{\mathrm{ox}}}}{\cos \theta}
$$

$$
\sin \theta \frac{g \frac{x_{f}}{v_{o x}}}{\cos \theta}=v_{o x}
$$

$$
\sin \theta g \frac{x_{f}}{v_{\mathrm{ox}}}=\mathrm{v}_{\mathrm{OX}} \cos \theta
$$

$$
\sin \theta g \frac{x_{f}}{\cos \theta}=v_{o x}^{2}
$$

$$
\sqrt{\mathrm{gx}_{\mathrm{f}} \tan \theta}=\mathrm{v}_{\mathrm{ox}}
$$

Check units $\sqrt{\left[\frac{m}{s^{2}}\right][m]}=\sqrt{\left[\frac{m^{2}}{s^{2}}\right]}=\left[\frac{m}{s}\right] \quad$ correct units for a velocity
$\sqrt{\left[32 \frac{\mathrm{ft}}{\mathrm{s}^{2}}\right][100 \mathrm{ft}] \tan 86^{\circ}}=\mathrm{v}_{\mathrm{ox}}=214 \mathrm{ft} / \mathrm{s}$

Evaluate:

If the distance the arrow goes gets larger, the initial speed of the arrow must increase. This is reasonable.

If the gravitational acceleration were smaller, the distance would be larger for the same initial speed of the arrow. This is reasonable since the arrow would take a longer time to fall to the ground.

A fast runner can go 100 m in 10 sec or about $30 \mathrm{ft} / \mathrm{s}$. The arrow's initial speed is about 7 times faster than a person can run. Reasonable for an arrow. It is about 5 times slower than the speed of a bullet, about the speed of sound or $1000 \mathrm{ft} / \mathrm{s}$. Also reasonable for an arrow.

Conceptual Questions:

1.	d	6. e
2.	d	7. e
3.	a	8. b
4.	a	$9 . \mathrm{d}$
5.	b	10. a

