1. Group Problem


What is the elastic force constant of the cord so that the person does not hit the ground?
$100 \mathrm{ft}=75 \mathrm{ft}+\mathrm{L}+5.5 \mathrm{ft}$ $19.5 \mathrm{ft}=\mathrm{L}$

Use conservation of energy to relate jumper's speed off the diving board to the stretch of the cord.

System: jumper + Earth + cord
Initial time: jumper just leaves the board.
Final time: jumper stops before hitting ground.
Neglect the air resistance and any horizontal component of jump.
Conservation of Energy: $\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\text {input }}-\mathrm{E}_{\text {output }}$
$\mathrm{E}_{\mathrm{i}}=\mathrm{GPE}_{\mathrm{i}}=\frac{1}{2} \mathrm{mv}_{\mathrm{o}}^{2}+\mathrm{mgh}$. Choose the zero of the vertical position at the center of the person hanging at the end of the cord. $h$ is the vertical position of the person just leaving the diving board.

$$
\mathrm{E}_{\mathrm{f}}=\mathrm{SPE}_{\mathrm{f}}=\frac{1}{2} \mathrm{~kL}^{2} . \mathrm{L} \text { is the distance the cord stretches. }
$$

There are no external forces on the parts of the system that are moving.
Thus $\mathrm{E}_{\text {input }}=0$ and $\mathrm{E}_{\text {output }}=0$.
Conservation of energy: $\frac{1}{2} \mathrm{~kL}^{2}-\left(\frac{1}{2} \mathrm{mv}_{\mathrm{o}}^{2}+\mathrm{mgh}\right)=0$ since $\mathrm{W}=\mathrm{mg}$
$\frac{1}{2} \mathrm{~kL}^{2}-\left(\frac{1}{2} \frac{\mathrm{~W}}{\mathrm{~g}} \mathrm{v}_{\mathrm{o}}^{2}+\mathrm{Wh}\right)=0$
Only one unknown. Check units before solving.

$$
\begin{aligned}
& {\left[\frac{\mathrm{N}}{\mathrm{~m}}\right][\mathrm{m}]^{2}-\left(\left[\frac{\mathrm{N}}{\frac{\mathrm{~m}}{s^{2}}}\right]\left[\frac{\mathrm{m}}{\mathrm{~s}}\right]^{2}+[\mathrm{N}][\mathrm{m}]\right)=0} \\
& {[\mathrm{Nm}]-([\mathrm{Nm}]+[\mathrm{Nm}])=0 \quad \text { Units are correct since all terms have the same units. }} \\
& \frac{1}{2} \mathrm{~kL}^{2}-\left(\frac{1}{2} \frac{\mathrm{~W}}{\mathrm{~g}} \mathrm{v}_{\mathrm{o}}^{2}+\mathrm{Wh}\right)=0
\end{aligned}
$$

$\mathrm{k}=\frac{\left(\frac{\mathrm{W}}{\mathrm{g}} \mathrm{v}_{\mathrm{o}}^{2}+2 \mathrm{~Wh}\right)}{\mathrm{L}^{2}}$
$\mathrm{k}=\frac{\left(\frac{120 \mathrm{lb}}{32 \frac{\mathrm{ft}}{\mathrm{s}^{2}}}\left(10 \frac{\mathrm{ft}}{\mathrm{s}}\right)^{2}+2(120 \mathrm{lb})(100 \mathrm{ft})\right)}{(19.5 \mathrm{ft})^{2}}=64 \frac{\mathrm{lb}}{\mathrm{ft}}$
The spring constant is in the correct units of force/distance.
If the length that the cord stretches $(\mathrm{L})$ is decreases, k increases. That is reasonable because a stiffer spring would stretch less under the same conditions.

If the speed that the person jumps off the diving board $\left(v_{o}\right)$ increases, $k$ increases for the same $L$. That is reasonable because a stiffer spring would be required to stop the person in the same distance.

If the person jumps from a greater height ( h ), k increases. That is reasonable because a stiffer spring would be required to stop the person in the same distance.

If the person just hung on the cord, it would stretch an amount determined by $\mathrm{F}=\mathrm{ky}$. In that case, the force exerted on the person by the cord would be equal to the weight of the person, $\mathrm{W}=\mathrm{ky}$. This gives the amount of stretch as $120 \mathrm{lb} /(64 \mathrm{lb} / \mathrm{ft})=1.9 \mathrm{ft}$. Seems small but not unreasonable.

