

Car going around a banked corner. Corner has a known angle and radius

Radial acceleration gives car's speed. Get acceleration from forces Free body Diagram of car

If road were not banked, could a car go around a curve? No friction, horizontal path

Forces (no friction case)
Free body Diagram of car

No force in desired direction radial inward
Therefore no acceleration
radial inward
Car cannot go around the curve !!
Using a different coordinate system
Force Diagram
of car
Target quantity is v
$\cos \theta=\frac{a_{x}}{a}$
$\sin \theta=\frac{a_{y}}{a}$
$a_{x}^{2}+F_{y}^{2}=a^{2}$

PLAN	unknowns
Find v	v
$a=\frac{v^{2}}{r}$	
$\mathrm{a}=\frac{\mathrm{v}}{\mathbf{r}}$	a
Find a	
$\cos \theta=\frac{a_{x}}{a}$	a_{x}
Find a_{x}	
$\mathrm{N}_{\mathrm{x}}=\mathbf{m a} \mathrm{x}_{\mathrm{x}}$	$\mathrm{m}, \mathrm{N}_{\mathrm{x}}$
Find N_{x}	
$\mathrm{N}_{\mathrm{x}}=\mathrm{N} \cos \theta$	
Find N	N
$\mathrm{N}_{\mathrm{y}}=\mathrm{N} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	N_{y}
Find N_{y} $\mathrm{ma}_{\mathrm{y}}=\mathrm{N}_{\mathrm{y}}-\mathrm{mg}$	$\mathrm{a}_{\text {y }}$
Find a_{y}	
7 equations, 8 unknowns ${ }^{\text {a }}$	

At low speeds the car
will slide down
the banked curve
If this is not to happen
Static frictional force
is up the bank
Free body Diagram
of car
This will give the car's minimum speed
to stay in a horizontal path (no skidding

Motion in r direction: $\Sigma \mathrm{F}_{\mathrm{r}}=\mathrm{mar}$
$\mathrm{T}-\mathrm{W}_{\mathrm{r}}=\mathrm{mar} \quad$
$\mathrm{ar}{ }^{\circ} 0$
$\mathrm{~T}-\mathrm{W} \cos \theta=\mathrm{mar}$
$\mathrm{I}-\mathrm{g} \cos \theta=\mathrm{ar}_{\mathrm{r}}$
m

From definition of acceleration and velocity for circular motion

$$
\mathbf{a r}_{\mathbf{r}}=\frac{\mathbf{v}^{2}}{\mathrm{r}}
$$

The combination of the gravitational force, W , and the force of the string on the ball,
T , cause the radial acceleration.
The radial acceleration changes because the component of W in the radial direction changes, and T changes

$$
\Sigma \mathrm{F}_{\mathrm{r}}=\mathrm{T}-\mathrm{W} \cos \theta
$$

$$
T=m\left(g \cos \theta+\frac{v^{2}}{r}\right)
$$

How does the spring force behave: If you increase the weight of the object Δy increases
Double the weight doubles $\Delta \mathrm{y}$

Theory of the spring force
$F_{s}=k y \quad y$ measured from stretched position
As the object gets further away from the unstretched position, the force increases.
Position change could be Δy or Δx
Call it Δx
if \mathbf{x} is measured from the unstretched position
Direction of that force is always opposite to the direction of the displacement from the unstretched position

The force that a spring exerts on an objec increases with its displacement
from its unstretched position

Object in motion on a vertical Spring
Assume spring is massless
Determine the object's acceleration

Use relationship between force and accel. Newton's 2nd law

$\Sigma F_{y}=\operatorname{may} \quad F_{s}=k \Delta y$

Surprises from the fundamental concepts of Force and acceleration

For an object hanging vertically on a spring If you set it into motion

$$
a_{y}=\frac{k}{m} y^{\prime}
$$

y^{\prime} is displacement from equilibrium position of the object

The acceleration of the object does not depend on g

The gravitational force does not affect the object's motion

Except, of course for displacing the equilibrium point.

Position from which
displacement is measured

Spring
Useful to measure the force on an object Hang an object on a spring

Equilibrium position gives

 object's weightUseful to measure the mass of an object
Let spring oscillate
Acceleration gives object's mass

Useful to measure the acceleration of a system

What is length of spring for accelerating object?
Use relationship between force and accel Newton's 2nd law
Use force law for spring

Plan		unknowns
Find y_{2}		y_{2}
accelerating object $F_{s}=-k\left(y_{2}-y_{0}\right)$		Fs, k
$\mathrm{F}_{\mathrm{s}}=-\mathrm{ky} \mathbf{2}^{2}$	1	
Find F_{s} $F_{s}-W=m a$	2	m
Find m $\mathrm{W}=\mathrm{mg}$	3	
Find \mathbf{k} object at rest		
$F_{\text {so }}=-\mathrm{k}\left(\mathrm{y}_{1}-\mathrm{y}_{0}\right)$		
$\mathrm{F}_{\text {so }}=-\mathrm{k} \mathbf{y}_{1}$	4	Fso

Find $\mathrm{F}_{\text {so }}$
Fso - W = 0
5 unknowns, 5 equations

$$
\begin{aligned}
& \text { From } 5 \\
& \begin{aligned}
& F_{\text {so }}=W \quad \text { into } 4 \\
& W=-k y_{1} \\
&-\frac{W}{y_{1}}=k \quad \text { into } 1 \\
& F_{s}=\frac{W}{y_{1}} y_{2} \\
& \text { From } 3 \text { into } 2 \\
& F_{s}-W=\frac{W}{g} a \\
& F_{s}=\frac{W}{g} a+W \\
& W y_{2} \\
& y_{1}=\frac{W}{g} a+W \\
& y_{2}=\left(\frac{a}{g}+1\right) y_{1} \quad \text { into } 1 \\
& 1.1(-6 \text { in })=y_{2} \\
& y_{2}=-6.6 \text { in of object }
\end{aligned} \\
& \hline
\end{aligned}
$$

You are asked to choose replacement

 springs for a pinball machine. The spring is used to launch a small 50 gram steel ball to begin the game. In order for the game to be fun, the ball should leave the spring at a speed of $10 \mathrm{ft} / \mathrm{sec}$. At the beginning of the game, the ball is at rest at the end of a spring which has been compressed 2.0 inches from its unstretched length. When yourelease the spring, it launches the ball neglected, what should be the spring constant of the spring you choose?

Question: What is spring constant?

Approach:

Use spring force to relate the spring constant to the spring's force on the ball

Relate that force to the acceleration of the ball using Newton's 2nd law.
se the definition of acceleration to relate the acceleration of the ball to its change of velocity.
Will I need the definition of velocity also? Neglect friction.

$$
\begin{aligned}
& 4 v_{x}=\frac{d x}{d t} \\
& d t=\frac{d x}{v_{x}} \quad \text { into } 3 \\
& a_{x}=\frac{d v_{x}}{d t} \\
& a_{x}=\frac{d v_{x}}{\frac{d x}{v_{x}}} \\
& a_{x}=v_{x} \frac{d v_{x}}{d x} \quad \text { into } 2 \\
& F_{s}=m v_{x} \frac{d v_{x}}{d x} \quad \text { into } 1 \\
& -k x=m v_{x} \frac{d v_{x}}{d x} \\
& -k x d x=m v_{x} d v_{x} \\
& m \int v_{x} d v_{x}=-k \int x d x
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{2} m v_{x}^{2}=-\frac{1}{2} k x^{2}+c \\
\text { Find } c \\
\text { at } x=x_{o}, v_{x}=0 \\
0=-\frac{1}{2} k x_{o}^{2}+c \\
c=\frac{1}{2} k x_{o}^{2} \\
\frac{1}{2} m v_{x}^{2}=-\frac{1}{2} k x^{2}+\frac{1}{2} k x_{o}^{2} \\
m v_{x}^{2}=k\left(-x^{2}+x_{o}^{2}\right) \\
\frac{m v_{x}^{2}}{-x^{2}+x_{o}^{2}}=k
\end{gathered}
$$

Evaluate at x_{t}

$$
\begin{gathered}
\frac{m v_{f}^{2}}{-x_{f}^{2}+x_{o}^{2}}=k \\
\frac{m v_{t}^{2}}{x_{o}^{2}}=k
\end{gathered}
$$

Example

Your team has just completed an inexpensive prototype of an inertial guidance system for use in cars. While building the prototype, your colleagues used three small springs to hold a part which is hanging vertically hold a part which is hanging
attached only to the springs.
attached only to the springs.
The three springs have the same length and each have one end attached to a rigid bar and the other end attached to the part. Precise adjustments have been made to the motion of the part by using a different spring constant for each spring. These spring constants are given in the design report. Now to make the final design less expensive and more reliable, your manager tells you to replace the three springs with a single spring, with the specifications you are to determine, without changing the design of the system.

Find the spring constant of a single spring which has the same behavior as the 3 springs Use spring force law

Single spring should have the same displacement and acceleration as the 3 springs when the object is hanging on it

Use relationship between force and acce
Use Newton's 2nd law

$$
\text { Put 4, 5, } 6 \text { into } 3
$$

$$
\begin{array}{lc}
\sum F_{y}=k_{1} y+k_{2} y+k_{3} y-W & \text { into } 2 \\
F_{s}-W=k_{1} y+k_{2} y+k_{3} y-w & \\
F_{s}=k_{1} y+k_{2} y+k_{3} y & \text { into } 1 \\
k y=k_{1} y+k_{2} y+k_{3} y & y \text { cancels out } \\
k=k_{1}+k_{2}+k_{3} &
\end{array}
$$

