This Week
Textbook -- Read Chapter 4, 5
Competent Problem Solver - Chapter 4
Pre-lab Computer Quiz

What's on the next Quiz?
Check out sample quiz on web by Thurs.
What you missed on first quiz
Kinematics - Everything
Check Your Understanding at end of each Laboratory is a good guide
Forces - to lecture before quiz Work problems as if taking the quiz:

Assigned homework - minimum if you can do them easily
Problems at end of chapter 3 and 4 of CPS

Other textbook problems

## Theory of Forces

The combined effect of ALL forces on an object that determines its acceleration.

The effects of forces in perpendicula directions are independent

The Mathematics:
Forces are vector quantities
Combining Forces means Vector Addition
Define a coordinate system with perpendicular x and y axes

Example: 2 forces act on an object, how does it move?


Forces and Motion
The relationship between
Forces on an object and Acceleration of an object
was found to be amazingly simple

The x component of acceleration of an object is proportional to
the sum of the x components of all of the forces on that object from the interactions of all other objects.

The constant of proportionality is
The mass of the object

## $\Sigma F_{\mathrm{x}}=\mathrm{m} \mathrm{ax}_{\mathrm{x}}$

The same is true for the $y$ and $z$ components

## Adding Forces

First: Take the vectors apart

Second: Put the resulting vector together

## Vector Notation $\vec{\Sigma} \vec{F}=\mathbf{m} \vec{a}$ <br> $\boldsymbol{\Sigma F}$ is the sum of the interactions of <br> "your" object with <br> all other objects

$\vec{a}$ is the acceleration of "your" object
$m$ is the mass of "your" object
$\overrightarrow{\Sigma F}=\mathbf{m a}$ means
$\Sigma F_{x}=m a_{x}$
$\Sigma F_{y}=m a_{y}$
Where $\mathbf{x}, \mathrm{y}, \mathrm{z}$ are three perpendicular directions.

Known as Newton's 2nd Law

## If an object is accelerating

Is there always a force in the
direction of the acceleration?
(a) Yes
(b) No

If no, give an example


There is no "real" force in the direction of a


Contact pushes by a surface are usually called normal forces

Normal is an old fashioned word for perpendicular

One more relevant Object: the Earth

Analyze the Forces
Finding all of the forces and their values

Simple case: A book on a table


Draw all relevant forces.

Did you get them all?
How do they combine?

How are they related?
Use diagrams to clarify

## Step 1: Isolation

Isolate the object you are interested in
Draw only the forces on that object
Only those forces determine its acceleration
There appear to be 2 important objects here:
The book
The table
First Object: the book
Free-body Diagram of Book
Only the forces on the book
$\mathrm{W}_{\mathrm{b}}$ : gravitational pull of the Earth on the book (weight of the book)
$\mathrm{N}_{\mathrm{tb}}$ : contact push of the table on the book (perpendicular to the table/book contact)

## Third Object: the Earth Free-body Diagram of Earth




For the table:

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{m} \mathrm{a}_{\mathrm{y}}=0 \\
& \mathrm{~N}_{\mathrm{Et}}=\mathrm{W}_{\mathrm{t}}+\mathrm{N}_{\mathrm{bt}}
\end{aligned}
$$



$$
\begin{gathered}
\boldsymbol{\Sigma} \mathrm{F}_{\mathrm{y}}=\mathrm{m} \mathrm{a}_{\mathrm{y}}=0 \\
\mathrm{~N}_{\mathrm{tE}}=\mathrm{W}_{\mathrm{bE}}+\mathrm{W}_{\mathrm{tE}}
\end{gathered}
$$

## Relationship of Forces on Interacting Objects

Object B pushes on Object A

$F_{1}$ is the contact push of object $B$ on object $A$. $F_{2}$ is the contact push of object $A$ on object $B$. $F_{1}$ and $F_{2}$ are always

| equal in magnitude |
| :---: |
| and |$\quad \overrightarrow{F_{1}}=-\overrightarrow{F_{2}}$

opposite in direction

## Newton's 3rd Law

When any two objects interact here is ALWAYS a force on each object caused by the other object
These forces are ALWAYS equal in magnitude and opposite in direction Newton's 3rd Law

These two forces are called 3rd Law Pairs

3rd Law Pairs ALWAYS
Act on DIFFERENT objects
Never show up on the same free body diagram

Are the SAME type of force
Newton's third law is true
Whether or not the objects are accelerating Whether or not one object is much larger than the other
Examples
When a baseball player hits a ball with a bat
When speeding car runs over a rat
(a) larger than the force of the ball on the bat
(b) smaller than the force of the ball on the bat
(c) equal to the force of the ball on the bat
(a) larger than the force of the rat on the car on
(b) smaller than the force of the rat on the car
(c) equal to the force of the rat on the car
Every force acting on your object has a third
law pair that is a force on another object

## Weight

The weight of an object is the gravitational force on it exerted by a much larger object.

Near the surface of the Earth that other object is the Earth

How do you calculate that force? We will get to that at the end of this semeste

## For now use Newton's 2nd law and a thought experiment to find what this

 gravitational force equalsSuppose you drop a book, the force on it is th Gravitational force of the Earth on the book

$$
\Sigma \mathrm{F}=\mathrm{W}_{\mathrm{b}}
$$

The book accelerates with a value $g$

$$
\Sigma F=m a=m g
$$

Thus $\mathrm{W}_{\mathrm{b}}=\mathrm{mg}$
True for any object near the surface of the Eart

| Example |
| :--- |
| As might be stated in your text |
| A 20 kg block rests on a frictionless table. A |
| cord attached to the block extends |
| horizontally to a pulley at the edge of the |
| table. When another block of unknown mass |
| is hung at the end of the cord after it passes |
| over the pulley, the hanging block accelerates |
| downward at $2.7 \mathrm{~m} / \mathrm{s}^{2}$ and pulls the other |
| block with it. Calcute the mass of the |
| hanging block and the tension in the cord. |

## As it might appear on a quiz

You have been hired as a consultant for a new movie about an expedition to the South Pole. In one scene, the explorers are on a glacier that comes to an end with a steep cliff. They need to get their supplies down the cliff. For safety, each box of supplies is roped to another box with a 30 m rope. One ox breaks away and falls off the cliff. The 20 kg box it is roped to is pulled over the horizontal ice of the glacier towards the edge of the cliff. It is important that the hero of the story save this box. You calculate that this can be done if this it has an acceleration of $2.7 \mathrm{~m} / \mathrm{s}^{2}$. Now you need to know the mass of the other box and the necessary strength of he rope.

FOCUS THE PROBLEM
 $\underbrace{+\mathrm{y}} \mathrm{x}$

You recognize You recognize
this from the lab
ind mass of hanging block and tension in cord

## Approach:

Use forces on $B$ to relate acceleration to $\mathrm{m}_{\mathrm{B}}$
$A$ and $B$ are tied together so they have the same magnitude of acceleration

Use forces on A to relate acceleration to $T_{A}$ For massless rope $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}$.
Since $B$ accelerates, force of rope on $B$ is less than its weight

Assumptions: massless cord, frictionless ice





## Example

As the engineering advisor to an
archeological team, you are trying to figure out how the ancient Egyptians could lift large blocks of stone from a quarry. The team has found evidence of wooden disks which could have been used as pulleys. The team leader has suggested that a three pulley system with one fixed pulley and two movable pulleys might have been used. You to have been assigned determine if the ropes used by the Egyptians would have been strong enough for such a system to lift a 1000 kg block of stone using the pulley system sketched below. You also want to know if one person could lift a block using that system.



| $\mathrm{T}_{1}=\mathrm{Mg}$ |
| :---: |
| $\mathrm{T}_{1}=(1000 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |
| $\mathrm{T}_{1}=9800 \mathrm{~N}$ |
| $\mathrm{~T}_{2}=\mathrm{Mg} / 2$ |
| $\mathrm{~T}_{2}=4900 \mathrm{~N}$ |
| $\mathrm{~T}_{3}=\mathrm{Mg} / \mathbf{4}$ |
| $\mathrm{T}_{3}=2450 \mathrm{~N}$ |
| $\mathrm{~T}_{4}=\mathrm{Mg} / 2$ |
| $\mathrm{~T}_{4}=4900 \mathrm{~N}$ |

## Evaluate

The force exerted by each rope is given in Newtons which is a unit of force.

The force exerted by each rope is never greater than the weight of the block so the answers are not unreasonable. The force exerted by a person lifting the block is less han the weight of the block. That is reasonable for a useful machine.

By Newton's 3rd Law, the force exerted by a rope is equal to the force applied to the rope. The force applied to the rope is its minimum strength. The first question is answered.

The force that a person needs to apply to lift the block is the 3rd Law Pair of $\mathrm{T}_{3}$. The second question is answered

Note that this example is a very useful gadget

To lift an object with a weight of 9800 Newton at a constant velocity
you only need to exert a force of $\mathbf{2 4 5 0}$ Newton

You have achieved a "mechanical advantage" of a factor of 4 !


## Example

Riding in a friend's sports car you feel the seat pushing on your back when it pulls away from a stop light. You decide you want to know the 1000 kg car's acceleration. How many g's are you "pulling"? You notice there is a die hanging from the rear view mirror. Very retro. When the car leaves the intersection the die makes an angle of $15^{\circ}$ with the vertical. Later you measure the mass of that die to be 100 grams. What was the acceleration of the car?
 die is as drawn?

Question: What is the acceleration of car? Approach:

Relate acceleration to force on the die Acceleration of car is acceleration of die Consider forces on die

By Earth (Weight)
By string (tension)
The acceleration in one direction is independent of the forces in perpendicular directions

Use components

## Physics Description


target variable: $\mathbf{a x}_{\mathrm{x}}$
Relevant equations:

$$
\begin{aligned}
& \Sigma F_{x}=m a_{x} \quad T_{x}=m a_{x} \\
& \Sigma F_{y}=m a_{y} \quad T_{y}-W=m a_{y}=0 \\
& \quad W=m g \\
& \sin \theta=\frac{T_{x}}{T} \quad \cos \theta=\frac{T_{y}}{T} \quad \tan \theta=\frac{T_{x}}{T_{y}}
\end{aligned}
$$



## Evaluate

$a_{x}$ is in same units as $g$ which is an acceleration so units are correct

The question is answered since the car is accelerating in the $x$ direction and the die is moving with the car.
Is the answer unreasonable?
A car which goes from 0 to 50 mph in 10 seconds has a high acceleration

$$
\begin{aligned}
& a_{a v}=\frac{\Delta v}{\Delta t} \\
& a_{a v}=\frac{\left(50 \frac{\mathrm{mi}}{\mathrm{hr}}\right)}{10 \mathrm{sec}}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{a}_{\mathrm{av}}=\frac{50 \frac{\mathrm{mi}}{\mathrm{hr}} \frac{5280 \mathrm{ft}}{\mathrm{mi}} \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \frac{1 \mathrm{~min}}{60 \mathrm{sec}}}{10 \mathrm{sec}} \\
\mathrm{a}_{\mathrm{av}}=\frac{7 \mathrm{ft}}{\mathrm{sec}^{2}}<1 / 4 \mathrm{~g} \quad \text { since } \mathrm{g}=\frac{32 \mathrm{ft}}{\mathrm{sec}^{2}}
\end{gathered}
$$

This car's acceleration is about that so the answer is reasonable

