## Using Potential Energy

You have a job providing the engineering help for an architect in Colorado. You are currently designing a cable tow to pull skiers up a hill so they can ski down. The customer would like the cable tow to pull a skier uphill at constant acceleration from the bottom reaching a speed of $6 \mathrm{~m} / \mathrm{s}$ at the top. You need to determine what type of cable you should purchase. The hill is 50 m long and inclined at 20 degrees from the horizontal. By measuring skier speeds on a downhill run, measuring skier speeds on a downhill run,
you know there is a friction force of 150 N you know there is a friction force of 150 N
between the skis and the snow independent of the skier's weight.

## Quantitative relationships:

Conservation of Energy
$\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\text {input }}-\mathrm{E}_{\text {output }}$
System energy is kinetic + potential
$\mathrm{E}_{\mathrm{i}}=\mathrm{KE}_{\mathrm{i}}+\mathrm{GPE}_{\mathrm{i}}=0+0$
$E_{f}=K E_{f}+G P E_{f}=\frac{1}{2} m v_{f}^{2}+m g h$
Energy transferred to and from system
$E_{\text {input }}=\left|\left.\right|_{0} ^{L} \stackrel{T}{\mathbf{T}} \cdot d\right|=\left|{ }_{0}^{L} \mathbf{T d}\right|=\left|\mathrm{r} \int_{0}^{\mathrm{L}} \mathrm{d}\right|=\mathrm{TL}$
$E_{\text {output }}=\left|\left.\right|_{0} ^{L} \hat{f} \cdot d \bar{d}\right|=\left|\int_{0}^{L} f d\right|=\left|f f_{0}^{L} d f\right|=\mathbf{L L}$
Conservation of Energy
$\frac{1}{2} \mathrm{mv}_{\mathrm{f}}^{2}+\mathrm{mgh}-\mathbf{0}=\mathrm{TL}-\mathrm{fL}$



$\frac{1}{2 L} m v_{f}^{2}+m g \sin \theta+f=T$
Check units
$T]=[$ force $],[f]=[$ force $],[\mathrm{mg} \sin \theta]=[$ force $]$
$\left[\frac{1}{2} \mathrm{~L} \mathrm{v}_{\mathrm{t}}^{2}\right]=[$ mass $] \frac{\left[\mathrm{m}^{2} / \mathrm{s}^{2}\right]}{[\mathrm{m}]}$
$=$ [mass] [acceleration] $=$ [force]
ok all units are force units
$T=\frac{1}{2(50 \mathrm{~m})}(100 \mathrm{~kg})(6 \mathrm{~m} / \mathrm{s})^{2}$
$+(100 \mathrm{~kg})(9.8 \mathrm{~m} / \mathrm{s})^{2} \sin 20^{\circ}+(150 \mathrm{~N})$
$36 \mathrm{~N}+335 \mathrm{~N}+150 \mathrm{~N}=\mathrm{T}$

## $\mathrm{T}=521 \mathrm{~N}$

Same as before

## Example

A friend's child is playing with a toy cars and you decide to help by building a loop-theloop track. You start a car on the entry track above the highest point on the circular part of the track. The car goes down the entry track around the circle and up an exit track. Based on the starting height of the car, you decide to calculate the speed of the car where it enters the circular part of the track as well as at the top of the circular part of the track and on the exit track 2 cm above where you started.


## Example

Your company has been hired to design a stunt for a new ice show. The star of the show enters by riding on a sled which starts from rest at the top of a curved ice track 20 m above the surface of the ice rink. The track leads down to the rink and, at that point, becomes a vertical circle which returns again to the rink. Your job is to calculate the maximum radius of the circle so that this daring loop-thetoop can be done without injuring the high priced star. Assume that you can neglect friction and air resistance as a first approximation.

| Use conservation of energy. system: object + Earth |  |
| :---: | :---: |
| $\mathbf{E}_{\mathbf{f}}-\mathbf{E}_{\mathbf{i}}=\Delta \mathbf{E}_{\text {transfer }}$ |  |
| $E_{i}=K E_{i}+P E_{i} \quad E_{f}=K E_{f}+P E_{f}$ |  |
| $\Delta \mathrm{E}_{\text {transfer }}=0$ | Assume friction and air resistance not important |
| From a to b |  |
| Initial time at top of entrance ramp. |  |



Maximum height when KE $=0$ All energy is PE
Maximum height is initial height if initial $K E=0$ No energy input
Maximum radius means minimum acceleration
Acceleration cannot be smaller than g at
top of circle
Get acceleration from forces on sled.
Get velocity from conservation of energy
System: sled + Earth
Gravitational potential energy start the tar top of track.
Ignore friction, air resistance

| Conservation of Energy: $\begin{aligned} & E_{f}-E_{i}=E_{\text {in }}-E_{\text {out }} \\ & \frac{1}{2} m v_{t}^{2}+m g y_{t}-m g y_{0}=0 \\ & \frac{1}{2} v_{t}^{2}+g(2 r)-g y_{0}=0 \end{aligned}$ |
| :---: |
| Target: $r$   <br> Find $r$  unknowns <br> $\frac{1}{2} v_{t}^{2}+g(2 r)-g y_{o}=0$ 1 $v_{t}$ |
| Find $v_{t}$ $\begin{equation*} a=\frac{v_{t}^{2}}{r} \tag{2} \end{equation*}$ <br> a <br> Find a $\begin{equation*} g=a \tag{3} \end{equation*}$ <br> 3 unknowns, 3 equations ok |


| [3] into [2] $g=\frac{v_{t}^{2}}{r}$ $\begin{gathered} r g=v_{t}^{2} \quad \text { Into [1] } \\ \frac{1}{2} r g+g(2 r)-\mathrm{gy}_{\mathrm{o}}=0 \\ \frac{1}{2} r+(2 r)-y_{o}=0 \\ \frac{5}{2} r=y_{o} \end{gathered} \begin{aligned} & \text { units are ok } \\ & \text { both sides } \\ & \text { distance units } \end{aligned}$ |
| :---: |
| The maximum height of the sled when travelling around the circle is 16 m , less than the initial height of $\mathbf{2 0 ~ m}$. |
| This is reasonable since some of the initial potential energy has become kinetic energy at the top of the circle. |

## Example

A skier starts from rest on the slope on a summit and then skis over two successively lower hilis of height 20 m and 10 m . Th lowest hill is essentially a semi-circle
centered at 0 height. The skier wants to leave the lowest hill at its top and fly through the air and asks you how far up the slope to start gliding down the hill. Assume friction and ai resistance are negligible.


What is the initial height of the skier to leave the second hill at its top?

Skier stays on hill if the forces on the kier give the acceleration necessary to go in a circle.

$$
a=\frac{v^{2}}{r}
$$

Get the speed on the top of the hill from conservation of energy.

System: skier + Earth
Initial time: start on slope
Final time : top of 2nd hill
Get the necessary acceleration from forces

 But that will not get you over the 1st hill
Need to be at a height of at least 20 m up the slope

## Example

From your laboratory experience, you know it is difficult to measure the coefficient of kinetic friction between two surfaces. One of your lab partners suggest using a spring to propel a block up a ramp inclined at an angle from the horizontal that you measure The block is to be held against a spring, compressing the spring a distance from its relaxed position that you measure. When the block is released, the spring expands and pushes the block upward along the ramp. The block leaves the spring, going a distance up the incline that you also measure? You can also measure the mass of the block and the spring constant. Will this procedure give you what you want?


## xecute the plan from the bottom up

## Put [4] into [3] and solve for $f_{k}$

$m g L \sin \theta-\frac{1}{2} k d^{2}=-f_{k} L$

$$
-m g \sin \theta+\frac{1}{2 L} \mathrm{kd}^{2}=\mathrm{f}_{\mathrm{k}}
$$

Put into [1] along with [2] and solve for $\mu_{\mathrm{k}}$

$$
\begin{gathered}
-\mathbf{m g} \sin \theta+\frac{1}{2 \mathbf{L}} \mathbf{k d}^{2}=\mu_{\mathbf{k}} \mathbf{m g} \cos \theta \\
\frac{-\mathbf{m g} \sin \theta+\frac{1}{2 \mathbf{L}} \mathbf{k d}^{2}}{\mathbf{m g} \cos \theta}=\mu_{\mathbf{k}}
\end{gathered}
$$

check units
force $]+\frac{1}{2[d i s-\tan \mathrm{ce}]}[$ foree $\cdot$ dis-tam ce$]$


Correct, $\mu_{k}$ has no units


Conservation of Energy: $\quad E_{f}-E_{i}=E_{i n}-E_{\text {ou }}$

$$
\begin{aligned}
& m g h-\frac{1}{2} k d^{2}=-\int_{0}^{L} f_{k} d x \\
& m g h-\frac{1}{2} k d^{2}=-f_{k} L
\end{aligned}
$$

target: $\mu_{k}$

## How to Solve Problems Using Energy

1. Picture the situation

What is the system?
How is it moving?
Is there energy transfer?
What path does the object travel?
Is there potential energy?
Carefully identify the initial time and the final time you want to consider.

Can you account for all of the energy of your system at those times?
KE + PE

Can you account for all energy transfers between those times?
$\mathbf{E}_{\text {transfer }}=\int_{\ell_{0}}^{\ell} \overrightarrow{\mathbf{F}} \cdot \mathbf{d} \vec{\ell}$

| 2. Define your quantities with respect to a <br> coordinate system. <br> Make sure you know which direction is <br> + and which is : <br> Force, position | 3. Identify all unknowns in your conservation <br> of energy equation and relate them by <br> equations to other information or principles <br> physics. |
| :--- | :--- |
| Use your defined quantities to write down <br> the conservation of energy equation for <br> your system. <br> Keep track of the signs. <br> Keep track of the target quantity. <br> Do you need to know anything else in <br> addition to conservation of energy? <br> Force laws <br> Kinematics <br> 4. Solve the system of equations to get your <br> target quantity.$\quad$5. Check you answer <br> Correct units? <br> Reasonable behavior or value? <br> Did you answer the question? |  |

