Example

While cross country skiing, you find you are on the top of a small hill. The hill side is a gentle slope at an angle of 20 degrees to the horizontal. You are new at this and are a bit afraid of going too fast since you are not good at stopping. You stop at the top of the hill and estimate that the hill side goes 100 feet before it gets to the bottom. How fast will you be going at the bottom of the hill? The coefficient of kinetic friction between your skis and the dry snow is 0.04 .

We solved this problem using dynamics. Now solve it using conservation of energy

Forces and Energy Transfer Energy input
If a force transfers energy to the skier
It would cause the skier to increase her kinetic energy.

Skier speeds up

The force has a component in the direction of the skier's velocity

Energy output

If a force transfers energy from the skier

It would cause the skier to decrease her

 kinetic energy.Skier slows down
The force has a component in the opposite direction to the skier's velocity

Since N and W_{y} are perpendicular to the velocity,

They cannot transfer
energy to or from the skier
Only forces with components along the velocity of an object can transfer energy to it or from it.

Conservation of Energy:
Conservation of Energy:
$\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\text {input }}-\mathrm{E}_{\text {output }}$
$\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}=\mathrm{E}_{\text {input }}-\mathrm{E}_{\text {output }}$
$\mathrm{E}_{\mathrm{i}}=$ initial kinetic energy of skier=0
$\mathrm{E}_{\mathrm{i}}=$ initial kinetic energy of skier $=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{m v}_{\mathbf{f}}^{\mathbf{2}}$
$\mathrm{E}_{\text {input }}\left(\right.$ caused by $\left.\mathrm{W}_{\mathrm{x}}\right)=\mathrm{W}_{\mathrm{x}} \mathrm{L}$
$\mathrm{E}_{\text {output }}($ caused by f) $=\mathrm{fL}$
$\mathrm{W}=\mathrm{mg}$
Force diagram
$\sin \theta=\frac{W_{x}}{W}$
$F=\mu N$
Conservation of Energy:

$\frac{1}{2} \mathrm{mv}_{\mathrm{f}}^{2}-0=m g \sin \theta \mathrm{~L}-\mu \mathrm{NL}$

Evaluation

$\mathrm{v}_{\mathrm{f}}=\sqrt{2 \mathrm{gL}(\sin \theta-\mu \cos \theta)}$

See how v_{f} changes as known quantities change

As the length of the hill increases (L), v_{f} increases. Reasonable

If the angle of the hill to the horizontal (L), v_{f} were 90°,

$$
\mathbf{v}_{\mathrm{f}}=\sqrt{2 \mathrm{gL}}
$$

No effect of friction. Reasonable because the skier would be falling straight down, free fall.
(L), v_{f} were 0°,

$$
v_{f}=\sqrt{-2 g L \mu}
$$

Not a real number so no final speed. If no slope, the skier does not move.
Reasonable.
Calculating Work
A simpler example:
Block sliding on a horizontal table
Push the object around on the table.
Looking down on a table
What is the energy transferred from the
block to the table?
Type of interaction: friction
Calculate energy output for each small
length of path
Add them up to get total energy output

Example

You have been hired to help design a new amusement park ride for small children. In this ride, a child sits in a cart that is attached to a large spring. A mechanism give the cart a shove and the cart moves back and forth. The cart is a hovercraft that rides on a cushion of air. To check the safety of this ride, you have been asked to write a computer program that calculates the child's speed at any time as a function of the spring constant and the initial speed given by the shove. You decide to test you program in the laboratory using a block of plastic sliding on an air table. They will not let you use a real kid.

More General
If f were changing along path

Add up all of the Work for the entire path
$\Sigma{ }^{\mathrm{f}}(\mathbf{\delta} \ell)$
Let δd be very small $(\mathrm{d} l) \longrightarrow 0$
$\int f(d) \quad$ Integral over path
If f is constant (does not change over the path)
$\int \mathrm{f}(\mathrm{d} \ell)=\mathrm{f} \int \mathrm{d} \ell$
$\int(\mathrm{d} /)=\mathbf{L}$
$\mathrm{E}_{\text {output }}=\mathrm{fL}$
But what if the force changes along the path?

Energy Transfer by a Spring
Block of mass m slides on a frictionless,
horizontal surface. The spring is
characterized by a spring constant k.
Decisions
System : block
Initial time : block at equilibrium moving left.
Final time : block past equilibrium moving left.
The entire motion of the block tells us there is
sometimes an energy output and sometimes
an energy input to the block from the spring.
To find the energy transfer from a changing
force, add up the energy transfer for each
small part of the path.
Sum becomes an integral


```
How to Solve Problems Using Energy
1. Picture the situation
    Where is the object?
    How is it moving?
        Is there energy transfer?
        What path does the object travel?
    Carefully identify the initial time and
    the final time you want to consider.
        Can you account for all of the energy
        of your object at those times?
        Can you account for all energy
        transfers between those times
    2. Define your quantities with respect to a
    coordinate system.
        Make sure you know which direction
        is + and which is -
```

 Force, position
 | 3. Use your defined quantities to write
 down the conservation of energy equation
 for your situation.
 Keep track of the signs.
 Keep track of the target quantity.
 Do you need to know anything else
 in addition to conservation of energy?
 Force laws
 Kinematics |
| :--- |
| 4. Identify all unknowns in your conservation |
| of energy equation and relate them by |
| equations to other information or principles |
| physics. |
| 5. Check you answer |
| Correct units? |
| Reasonable behavior or value? |

3. Use your defined quantities to write down the conservation of energy equation

Keep track of the signs.
Keep track of the target quantity.
Do you need to know anything else in addition to conservation of energy?

Kinematics

4. Identify all unknowns in your conservation of energy equation and relate them by
equations to other information or principles
physics.

Correct units?
Reasonable behavior or value?

