Another 2-D Motion
Uniform Circular Motion
Qualitative Aspects
Quantitative Relationships
From definitions
velocity
acceleration
Vector Components
Some jargon
Period
Angular speed

Uniform Circular Motion
 - Trajectory--circle
 - Speed--constant

What is the velocity and acceleration of an object in uniform circular motion?

What do we know about a circle

- Every point on the circle is the same distance from the center.
radius r

- Distance around the circle is 2π circumference C

The radius is perpendicular to any tangent to the circle

- The motion repeats (periodic) Time to make one full revolution period T
- Average speed for one period $\stackrel{C}{\text { C }}$

Average velocity for one period

- Magnitude of instantaneous velocity

Velocity Magnitude
$v^{2}=v_{x}^{2}+v_{y}^{2}$
$v_{x}=\frac{d x}{d t}$
$v_{x}=\frac{d(r \cos \theta)}{d t} \quad r$ is a constant
$v_{x}=r \frac{d(\cos \theta)}{d t}$
$v_{x}=-r \sin \theta \frac{d \theta}{d t}$
Do the same for v_{y}
$v_{y}=\frac{d y}{d t}$
$v_{y}=\frac{d(r \sin \theta)}{d t}$
$v_{y}=r \cos \theta \frac{d \theta}{d t}$
Should agree with what you got in lab

$$
\begin{aligned}
& v=\sqrt{v_{x}^{2}+v_{y}^{2}} \\
& v=\sqrt{r^{2} \sin ^{2} \theta\left(\frac{d \theta}{d t}\right)^{2}+r^{2} \cos ^{2} \theta\left(\frac{d \theta}{d t}\right)^{2}} \\
& v=r \frac{d \theta}{d t} \sqrt{\sin ^{2} \theta+\cos ^{2} \theta}=r \frac{d \theta}{d t} \\
& \frac{v}{r}=\frac{d \theta}{d t} \quad \quad a \operatorname{constant}
\end{aligned}
$$

The rate that the angle changes is constant if the speed is constant

note:

Pythagorean Theorem

$$
\begin{array}{ll}
r^{2}=x^{2}+y^{2} & r^{2}=r^{2} \cos \theta^{2}+r^{2} \sin ^{2} \theta \\
r^{2}=r^{2}\left(\cos \theta^{2}+\sin ^{2} \theta\right)
\end{array}
$$

$$
1=\left(\cos \theta^{2}+\sin ^{2} \theta\right)
$$

Replay
 Get acceleration into components

$$
\overrightarrow{\mathbf{a}}=\mathbf{a}_{\mathbf{x}} \hat{\mathbf{i}}+\mathbf{a}_{\mathbf{y}} \hat{\mathbf{j}}
$$

Use definition of accel. for each component

$$
a_{x}=\frac{d v_{x}}{d t} \quad a_{y}=\frac{d v_{y}}{d t}
$$

- Get definition of velocity for each componen

$$
v_{x}=\frac{d x}{d t}
$$

$$
v_{y}=\frac{d y}{d t}
$$

- Use $\frac{d \theta}{d t}=\frac{v}{r}$
- Use Pythagorean Theorem

$$
a^{2}=a_{x}^{2}+a_{y}^{2}
$$

to get magnitude of acceleration

$$
a=\frac{v^{2}}{r}
$$

- Use components of acceleration to show Acceleration is directed inwards toward the center of the circle

Qualitative Analysis

Magnitude of instantaneous velocity
Circle B is larger than circle A
Object B takes same time as object A
to go once around the circle

$$
v_{B}>v_{t}
$$

Magnitude of instantaneous acceleration
In any time interval,
the change of direction of A is the same as the change of direction of B

$\Delta \mathrm{V}_{\mathrm{B}}>\Delta \mathrm{V}_{\mathrm{A}} \quad \mathrm{V}_{\mathrm{B} 2}$

$$
\overrightarrow{\mathrm{a}}_{\mathrm{avA}}=\frac{\Delta \overrightarrow{\mathrm{v}}_{\mathrm{A}}}{\Delta \mathrm{t}} \quad \quad \overrightarrow{\mathrm{a}}_{\mathrm{avB}}=\frac{\Delta \overrightarrow{\mathrm{v}}_{\mathrm{B}}}{\Delta t}
$$

$$
\Delta t \text { is same for both objects }
$$

$a_{a v B}>a_{a v ~ A}$

Example

You have a job at a business which designs parts for jet engines. Your task, as a memb a safety team is to compare the motion o o difent parts located on a disk attach to the turbine shaft. The part furthest from
the turbine shaft is three times the distance the turbine shaft is three times the distance
from the shaft as the other part. The turbine from the shaft as the other part. The turbine
shaft goes through the center of the disk and shaft goes through the censere the disk is in uniform circular motion at \mathbf{n} rotations/sec.

Question: Compare V_{A} and v_{B} Compare a_{A} and a_{B}

Approach

Compare means make an equation involving the two quantities in question

Both objects have a constant speed
Both objects take the same time to go around a full circle
Same period

The objects go around circles of different circumference.
The objects have different speeds
Use definition of average speed
For constant speed, instantaneous speed equals average speed
Use relationship between instantaneous peed and acceleration for uniform speed and acce

$$
\begin{aligned}
& \text { Qualitatively, which is largeI } \\
& \qquad \begin{array}{l}
v_{A} \text { or } v_{B} \\
a_{A} \text { or } a_{B}
\end{array} \\
& \text { Why? }
\end{aligned}
$$

unknowns
Find v_{A} C_{A}

$$
\begin{equation*}
v_{A}=\frac{C_{A}}{T} \tag{1}
\end{equation*}
$$$C_{A}$

Find C_{A}
$\mathrm{C}_{\mathrm{A}}=2 \pi \mathrm{r}_{\mathrm{A}} \quad 2$
r_{A}

Find r_{A}
$r_{B}=3 r_{A}$$r_{B}$

Find r_{B}
$\mathrm{C}_{\mathrm{b}}=2 \pi \mathrm{r}$ в 4Св
Find C_{B}

$$
\mathrm{v}_{\mathrm{B}}=\frac{\mathrm{C}_{\mathrm{B}}}{\mathrm{~T}} \quad 5
$$

5 unknows, 5 equations

Plan to find acceleration

Find a_{A}

$a_{A}=\frac{v_{A}{ }^{2}}{r_{A}}$
1
a_{a}

Find v_{A}
from 1st part
$\mathrm{v}_{\mathrm{A}}=\frac{1}{3} \mathrm{v}_{\mathrm{B}}$

Find ra
$r_{A}=\frac{1}{3} r_{B}$
r_{B}
Find r_{B}
$a_{B}=\frac{v_{B}{ }^{2}}{r_{B}}$
4 unknowns, 4 equations

$$
\begin{aligned}
& 4 \quad a_{B}=\frac{v_{B}{ }^{2}}{r_{B}} \\
& \mathrm{r}_{\mathrm{B}}=\frac{\mathrm{v}_{\mathrm{B}}{ }^{2}}{\mathrm{a}_{\mathrm{B}}} \text { into } 3 \\
& r_{A}=\frac{v_{B}{ }^{2}}{3 a_{B}} \quad \text { into } 1 \\
& a_{A}=\frac{v_{A}{ }^{2}}{v_{B}{ }^{2}} \\
& \frac{\mathrm{~V}_{\mathrm{B}}{ }^{2}}{3 a_{\mathrm{B}}} \\
& \text { 2) } \mathrm{v}_{\mathrm{A}}=\frac{1}{3} \mathrm{v}_{\mathrm{B}} \text { into } 1 \\
& a_{A}=\frac{\left(\frac{v_{B}}{3}\right)^{2}}{\frac{v_{B}{ }^{2}}{3 a_{B}}} \\
& a_{A}=\frac{1}{3} a_{B}
\end{aligned}
$$

Example

A space shuttle typically has a circular orbit around the earth at a height of 200 miles. It travels with a constant speed and completes one orbit in 90 minutes. The radius of the Earth is about 4000 miles. What is its acceleration?

Target quantity: a

Quantitative relationships:

$$
\begin{array}{ll}
a=\frac{v^{2}}{r} & s=\frac{\text { distance }}{\Delta t} \\
C=2 \pi r & v=s \text { for constant } s
\end{array}
$$

PLAN:	unknowns
Find a	a
$\begin{equation*} a=\frac{v^{2}}{r} \tag{1} \end{equation*}$	v
Find v $\begin{equation*} v=\frac{2 \pi r}{T} \tag{2} \end{equation*}$	
2 unknowns, 2 equations	
$a=\frac{\left(\frac{2 \pi r}{T}\right)^{2}}{r}$	
$\mathrm{a}=\frac{4 \pi^{2} \mathrm{r}}{\mathrm{T}^{2}} \quad$ check units	
$\mathrm{a}=\frac{4 \pi^{2}(4200 \mathrm{mi})}{(90 \mathrm{~min})^{2}}$	
$a=20.5 \frac{\mathrm{mi}}{\mathrm{min}^{2}}$	

Evaluate: [distance] $\left[\right.$ time ${ }^{2}$ Are correct units for accel. The question is answered since the acceleration of the shuttle is calculated Does a make sense? Compare it to g. $\mathrm{a}=20.5 \frac{\mathrm{mi}}{\mathrm{min}^{2}}\left(\frac{1 \mathrm{~min}}{60 \mathrm{sec}}\right)^{2}\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mi}}\right)$ $\mathrm{a}=30 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}$ slightly less than the acceleration if you drop it on the surface of the Earth
This makes sense since 200 miles is very close to the surface of the Earth compared to 4000 miles.

