

ſ	Approach:
	Compare means make an equation involving the two quantities in question.
	Both objects have a constant speed
	Both objects take the same time to go around a full circle
I	Same period
I	The objects go around circles of different circumference.
l	The objects have different speeds
	Use definition of average speed
	For constant speed, instantaneous speed equals average speed
	Use relationship between instantaneous speed and acceleration for uniform circular motion
	Qualitatively, which is larger
I	VA OT VB
	aA or aB
I	Why?

Example

A space shuttle typically has a circular orbit around the earth at a height of 200 miles. It travels with a constant speed and completes one orbit in 90 minutes. The radius of the Earth is about 4000 miles. What is its acceleration?

Evaluate:
[distance] [time] ² Are correct units for accel.
The question is answered since the acceleration of the shuttle is calculated
Does a make sense? Compare it to g.
$a = 20.5 \frac{mi}{min^2} (\frac{1 min}{60 sec})^2 (\frac{5280 ft}{1 mi})$
$a = 30 \frac{ft}{sec^2}$
slightly less than the acceleration if you drop it on the surface of the Earth
This makes sense since 200 miles is very close to the surface of the Earth compared to 4000 miles.