This week
Applications of Forces and Torques
Chap. 12, sec. 1-5
Conservation of angular momentum
Chap. 10, sec. 1-4
Last weeks
Oscillations
Chap. 14

Final Exam covering the entire semester
Extra time granted about 1 hour
about 5 Problems
about 30 Multiple Choice

Early start for those who want it $\mathbf{- 6 p m}$

Each problem will typically involve severa fundamental physics concepts.

What the quantities mean
What the quantities are equal to
Dynamics - Linear and rotational
Add Forces Add Torques Newton's 2nd Law Newton's 3rd Law
Conservation -Linear and rotationa $\mathrm{X}_{\mathrm{t}}-\mathrm{X}_{\mathrm{i}}=\mathrm{X}_{\text {transter }}$

Energy
Momentum
Angular Momentum

Review	
Defined the bar as the system	
used	
$\Sigma \overrightarrow{\mathrm{F}}=\mathbf{m}$	
$\sum \mathrm{F}_{\mathrm{x}}=0$	
$\sum F_{y}=0$	needed to find angles
$\sum \tau=0$	took hinge as axis of rotation
$\vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$	
$\tau=\mathbf{r} \mathrm{F}_{\mathrm{t}}$	needed to find angles

Defined package as the system
$\sum \overrightarrow{\mathrm{F}}=\mathbf{m} \overrightarrow{\mathbf{a}} \quad$ on package to get T
Organize the algebra

Rotations and Conservation An ice skater is spinning in place on the ice when he brings his arms in close to his body. Determine his angular speed as a function of his initial and final moment of inertia and initial angular speed.

What is Wrong
Conservation of Energy
forgot the change of internal energy
$\frac{1}{2} l_{\mathrm{f}} \omega_{\mathrm{f}}^{2}-\frac{1}{2} I_{o} \omega_{\mathrm{o}}^{2}+\Delta \mathrm{E}_{\text {intemal }}=0$
In case of skater
Internal energy decreases to pull arms in
In case of disk and ring
Internal energy increases in inelastic collision
Don't know the change of internal energy
Conservation of energy is not useful.

Angular momentum	
Angular momentum is conserved	
$\Delta \bar{L}_{\text {system }}=\Delta \overline{\mathbf{L}}_{\text {transfer }}$	
$\mathbf{L}=\mathbf{I} \bar{\omega}$	
$\Delta \mathbf{L}_{\text {transfer }}=\int_{\text {interaction time }} \tau \mathbf{d t}$	

A 250 g hockey puck traveling across the ice at $5.0 \mathrm{ft} / \mathrm{sec}$ hits the end of a 1.0 kg hockey stick that is laying at rest on the ice. The puck hits the hockey stick 3.0 ft from its center of mass. The puck bounces straight back at $1.0 \mathrm{ft} / \mathrm{sec}$. How does the hockey stick move just after it is hit? The moment of inertia of the hockey stick rotating about its center of mass is $0.10 \mathrm{~kg} \mathrm{~m}^{2}$.

Before Collision
What is ω for the system ?
$\omega=\frac{v_{t}}{r}$ just before collision $\quad \omega_{o}=\frac{v_{o}}{r}$
An object moving in a straight line can have an angular velocity Depends on axis of rotation
Initial angular momentum $L_{i}=I_{p} \omega_{0}=I_{p} \frac{v_{0}}{r} \quad$ Direction: same as ω out

Conservation of Momentum

$$
\left(m_{s} v_{s}-m_{p} v_{f}\right)-m_{p} v_{o}=0
$$

Find v_{s}

$$
m_{s} \mathbf{v}_{\mathrm{s}}=\mathrm{m}_{\mathrm{p}} \mathbf{v}_{\mathrm{o}}+\mathrm{m}_{\mathrm{p}} \mathbf{v}_{\mathrm{f}}
$$

$$
v_{s}=\frac{m_{p}}{m_{s}}\left(v_{o}+v_{f}\right)
$$

check units

$$
\mathrm{v}_{\mathrm{s}}=\frac{0.25 \mathrm{~kg}}{1.0 \mathrm{~kg}}\left(5.0 \frac{\mathrm{ft}}{\mathrm{~s}}+1.0 \frac{\mathrm{ft}}{\mathrm{~s}}\right)
$$

$$
v_{s}=1.50 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

note that there was no need to convert to consistent units.
Conservation of Angular Momentum
$-m_{p} r^{2} \frac{v_{f}}{r}+I_{s} \omega-m_{p} r^{2} \frac{v_{o}}{r}=0$
Find ω
$I_{s} \omega=m_{p} r^{2} \frac{v_{o}}{r}+m_{p} r^{2} \frac{v_{f}}{r}$
$I_{s} \omega=m_{p} r\left(v_{o}+v_{f}\right)$
$\omega=\frac{m_{p} r\left(v_{o}+v_{f}\right)}{I_{s}}$
check units
put in numbers

Conservation of angular momentum

$$
\Delta \overrightarrow{\mathbf{L}}_{\text {system }}=\Delta \overrightarrow{\mathbf{L}}_{\text {transfer }}
$$

Any change in the angular momentum of a system must come from

Interactions with objects outside the system
You choose the system

System bicycle wheel

Direction of Angular Momentum of system Initial: down final: up
$\int \vec{\tau} \mathbf{d t}=\Delta \overrightarrow{\mathbf{L}}_{\text {transf }}$
interactiotime
Angular Momentum transfer by ?

Another system

System bicycle wheel + person + stool Chair is free to turn (no external torque) No Angular Momentum transfer

Direction of Angular Momentum of system
Initial: down Final: down

$\Delta \mathrm{L}_{\text {transter }}$ is out

$$
\begin{aligned}
& \left.=\frac{r}{A}-G\right) \\
& L_{i}=0 L_{f}=?
\end{aligned}
$$

Conservation of angular momentum
$\overrightarrow{\mathbf{L}}_{\mathbf{f}}-\overrightarrow{\mathbf{L}}_{\mathbf{i}}=\Delta \overrightarrow{\mathbf{L}}_{\text {transfeı }}$
$L_{f}=\Delta L_{\text {transter }} \quad L_{f}$ is out
$\overrightarrow{\mathbf{L}}_{\mathbf{f}}=\mathbf{I} \vec{\omega} \quad \omega$ is out
System turns up
What happens if wheel is spinning?
The rotating wheel has a large angular momentum

Angular momentum transfer
Balanced with rotating wheel
apply a force
The force causes a torque on the system
$\vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$
Torque direction: out
The torque causes angular momentum transfer to the system
$\int_{\text {int eraction time }}^{\int \vec{\tau} \mathrm{dt}}=\Delta \overrightarrow{\mathbf{L}}_{\text {transfer }}$
Angular momentum transfer direction: out

