This week

Applications of Forces and Torques Chap. 12, sec. 1-5

Conservation of angular momentum Chap. 10, sec. 1-4

Last weeks

Oscillations Chap. 14

Example

You have a part time job with a company that designs loading equipment for freight. Your team has designed a simple crane for lifting heavy cargo. A 45.0 kg bar 15 ft long is made out of lightweight aluminum and is supported at its base by a hinge that allows the bar to pivot vertically. A support cable runs from the other end of the bar that is in the air to the ground. The team is worried that the hinge might fail. Your task is to determine the force on the hinge when a package of 225 kg is lifted straight up into the air from the end of the bar. You have been asked to consider the case where the bar is at an angle of 45° to the ground and the support cable is at an angle of 30° to the ground. The package is lifted with an acceleration of 0.10g.

Final Exam covering the entire semester Extra time granted about 1 hour about 5 Problems about 30 Multiple Choice Early start for those who want it - 6 pm Each problem will typically involve several fundamental physics concepts.

Starting a Solution Three possible approaches to solving physics problems		
Kinematics - Linear and rotational		
 Position Time Velocity Acceleration 	• Angle • Time • Angular Velocity • Angular Acceleration	
What the quantities mean. What the quantities are equal to.		
Dynamics - Linear and rotational		
Add Forces	Add Torques	
Newton's 2nd Law		
Newton's 3rd Law		
Conservation - Linear and rotational X _f -X _i = X _{transfer}		
Energy Momentum		
Angular Morr	nentum	

Find H _y (Forces)
$H_y - C sing - m_b g - T = 0$
Find C (from before)
$C = (m_p (a + g) sinm + (1/2) m_b g sinm) / sinb$
Find T (from before)
$T = m_p a + m_p g$
H _y =sing ((m _p (a + g) sinaar + (1/2) m _b g sinaa) / sinab) +m _b g + m _p (a + g)
Check units
Everything is known
just plug in the numbers
Finally $H_x^2 + H_y^2 = H^2$

		unknowns		
Find H		н		
$H_x^2 + H_y^2 = H^2$	[1]	H _x , H _y		
Find H _x (Forces)				
H_x -C cosg = 0	[2]	С		
Find C (Torque)				
L Csin b - L Tsin m - (L/2) m _b g sin m = 0				
Csin b - Tsinm- (1/2) $m_b g sinm= 0$ [3] T				
Find T (Forces on package)				
T - m _p g = m _p a	[4]			
Can solve for H_x				

Review		
Defined the bar as the system		
used		
à F = mã		
$\dot{\mathbf{a}} \mathbf{F}_{\mathbf{x}} = 0$		
å F _y = 0	needed to find angles	
• * 0	took hinge as axis	
at=0	of rotation	
t=r ́ F		
t = rF _t	needed to find angles	
Defined package as the system		
å Ē=mā	on package to get T	
Organize the algebra		

4] T - $m_p g = m_p a$ Solve for T put in [3]
$T = m_p (a + g)$
Csin b - m _p (a + g) sinma- (1/2) m _b g sinm= 0
olve for C put into [2]
$Csin\mathbf{b} = m_p (a + g) sinum + (1/2) m_b g sinum $
$C = (m_p (a + g) sinum + (1/2) m_b g sinum) / sinub$
$x = \cos g(m_p (a + g) \sin m + (1/2) m_b g \sin m) / \sin b$
Check units
Ok units of force = units of ma
verything is known
Just plug in the numbers
l _x = cos30° ((225kg) (9.8) (m/s²)(1.1) sin45° +
l/2)(45kg) (9.8) (m/s²) sin45°) / sin15°)

Rotations and Conservation An ice skater is spinning in place on the ice when he brings his arms in close to his body. Determine his angular speed as a function of his initial and final moment of inertia and initial angular speed. \mathbf{w}_{f} final initial Possible approaches Dynamics (vector) à t = Ia Conservation of Energy (scalar) $KE = \frac{1}{2}lw^2$ Use energy ---- system: skater $\frac{1}{2}\mathbf{l}_{f}\mathbf{w}_{f}^{2} - \frac{1}{2}\mathbf{l}_{o}\mathbf{w}_{o}^{2} = 0$ $\mathbf{w}_{f}^{2} = \frac{\mathbf{l}_{o}}{\mathbf{l}_{f}}\mathbf{w}_{o}^{2}$ $\mathbf{w}_{f} = \sqrt{\frac{\mathbf{l}_{o}}{\mathbf{l}_{f}}}\mathbf{w}_{o}$ if $I_f < I_o$ Is it true? $\mathbf{w}_{f} > \mathbf{w}_{o}$

A 250 g hockey puck traveling across the ice at 5.0 ft/sec hits the end of a 1.0 kg hockey stick that is laying at rest on the ice. The puck hits the hockey stick 3.0 ft from its center of mass. The puck bounces straight back at 1.0 ft/sec. How does the hockey stick move just after it is hit? The moment of inertia of the hockey stick rotating about its center of mass is 0.10 kg m².

right hand rule: from r to p

out

Just before the puck hits the stick it has an

