Cooperative Group Problem Solving in Physics*

Patricia Heller
Department of Curriculum and Instruction

Kenneth Heller
School of Physics and Astronomy

* Supported in part by the National Science Foundation (NSF), the Department of Education, Fund for Improving Post-Secondary Education (FIPSE), and by the University of Minnesota.
Table of Contents

1. The Minnesota Model of Large Introductory Courses
 Flow Chart of Minnesota Model .. 3
 Description of Minnesota Model .. 4

2. Teaching Problem Solving
 A Logical Problem-solving Strategy ... 19
 Flow-charts of the Problem-solving Strategy 26
 Blank Problem-solving Format Sheets 32
 Grading Feedback ... 34

3. Cooperative Group Problem Solving in Discussion Sections
 Why Cooperative Group Problem Solving? 39
 Frequently Asked Questions (FAQ) about Cooperative Groups 40
 General Plan for Teaching a Discussion Section 43
 Chart of Group Roles .. 48
 Group Functioning Evaluation .. 49
 Typical Objections to Cooperative Groups 50

4. Context-rich Written Problems
 What Are Context Rich Problems? ... 55
 What Are the Characteristics of a Good Group Problem? 55
 Twenty-one Characteristics That Can Make a Problem Difficult 55
 How to Create Context-rich Problems 57
 How to Judge If a Problem is a Good Group Problem 58
 Context-rich Problems in This Booklet 60

5. Problem-solving Laboratories
 Frequently Asked Questions (FAQ) about our Problem-solving Labs 119
 Comparisons of Different Types of Labs 125
 General Plan for Teaching a Laboratory Section 126
 Table of Contents for Calculus-Based Introductory Labs 132
 Laboratory Manual's Introduction to Problem-solving Labs 137
 Example of Adapting a Textbook Problem:
 Laboratory Manual's Introduction to Forces Lab 147
 Enhanced Version of Problem #2: Forces in Equilibrium 148
 Instructor's Guide to Forces Labs ... 153
 Example of Exploratory Problem: Magnets and Moving Charge 160
 Example of Importance of Predictions: Gravitational Force on the Electron 163

6. References
 Cooperative Group Problem Solving at the University of Minnesota 171
 A Short Bibliography of Articles and Books About Cooperative Grouping ... 172
Acknowledgments

The authors would like to thank the many people who have contributed to the development of the problem-solving strategy, context-rich problems, the lab problems, and the appendices, especially

Jennifer Blue Andrew Kuntz Konrad Mauersberger
Dave Demuth Charles Henderson Laura McCullough
James Flatten Mark Hollabaugh Bruce Palmquist
Andrew Ferstl Ron Keith† Julia Stephen
Tom Foster Dan Lottis Jaena Streets

And the physics faculty and graduate students who helped write the laboratory and context-rich problems and helped refine these techniques.

Patricia Heller
Kenneth Heller

Also, Visit our WWW Page:

http://www.physics.umn.edu/groups/physed

© University of Minnesota, 1999

† University of Kansas