Instructor’s Ideas about Problem Solving*

Vince H. Kuo

Ken Heller, Patricia Heller, Charles Henderson, Edit Yerushalmi

University of Minnesota

http://groups.physics.umn.edu/physed/

*Supported in part by NSF grant #DUE-9972470
UMN

Physics Education Research Group

Faculty
Patricia Heller
Kenneth Heller

Graduate Students
Paul Knutson
Vince Kuo

Recent Graduates
Dr. Charles Henderson (2002), Assistant Professor, UWM
Dr. Tom Foster (2000), Assistant Professor, SIUE
Dr. Laura McCullough (2000), Assistant Professor, UW-Stout

Some Current Projects:
• Curriculum development at the introductory level: Problem Solving Focus (Cooperative Group Problem Solving, Problem Solving Laboratories, Problem Solving Framework w/ Context Rich Problems)
• Student-Centered Curriculum Development (CPU - high school and college; CIPS – middle school)
• Research into stability of curricular changes and faculty adoption of innovative curricula (Faculty Conceptions)
Overview of talk

1. Why study faculty conceptions?
2. Research Methods
   - The Interview Tool
   - Selecting Faculty for Interviews
   - Analyzing Interview Data
3. Preliminary Results – first stage
4. Current stage
5. Hypotheses & Implications
The Instructional Problem

Initial State of Learner

Transformation Process (i.e. Instruction)

Desired Final State of Learner

Instructor

Reif (1995), *AJP* 63(1)
Ideal Introductory Physics

Transformation Process

Misconceptions
Formula-Based Problem Solving

Appropriate Instruction

Correct Conceptions
Principle-Based Problem Solving

Instructor

Van Heuvelen (1991), *AJP 59*(10)
Traditional Introductory Physics

Transformation Process

Traditional Instruction
(i.e. teacher-centered lecture, verification labs, textbook problems)

Instructor

Van Heuvelen (1991), AJP 59(10)
Physics Education To The Rescue

Transformation Process

Traditional Instruction
(i.e. teacher-centered lecture, verification labs, textbook problems)

Instructor

Misconceptions
Formula-Based Problem Solving

Overview, Case Study
(Van Heuvelen et. al.)

Cooperative Group Problem Solving
(Heller et. al.)

Peer Instruction
(Mazur et. al.)

Personal Assistants for Learning
(Reif et. al.)

Minds on Physics
(Mestre et. al.)

Tutorials
(McDermott et. al.)

Workshop Physics
(Laws et. al.)
Why don’t more faculty stop using traditional instruction and start using research based curricular materials?

Our theory: The available curricular materials are not consistent with faculty conceptions (i.e. beliefs, values, knowledge, etc.) of teaching and learning

If this is the case then we need to either:

1. Change the curricular materials
   (curricular materials built on faculty conceptions are more likely to be used and more likely to be used appropriately)

2. Change the faculty conceptions
   We know from students:
   • Changing conceptions is hard
   • In order to change conceptions it is first necessary to determine what the current conceptions are
Why are Faculty Conceptions Important?

1. Subject (i.e., knowledge and beliefs about the subject they are teaching)
2. Teaching and Learning (e.g., pedagogical knowledge, orientation towards teaching)
3. Context (e.g., perceptions of student capabilities, perceptions of administrative constraints)

1. Selection of teaching approach
2. Selection of teaching materials
3. Evaluation of teaching

*e.g. Prosser & Trigwell (1999), Understanding Learning and Teaching*
Focus of This Talk

Faculty Conceptions

1. **Subject** (i.e., knowledge and beliefs about the subject they are teaching)
2. **Teaching and Learning** (e.g., pedagogical knowledge, orientation towards teaching)
3. **Context** (e.g., perceptions of student capabilities, perceptions of administrative constraints)

Faculty knowledge and beliefs about the **problem solving process**

Influences

1. How they model/explain problem solving to students
2. How they expect students to solve problems
3. How they expect students to learn how to solve problems
4. Their attitudes towards curricular materials
Who Needs to Understand Faculty Conceptions?

Curriculum Developers Need to Understand Faculty Conceptions:
- Instructional materials and/or strategies may not align with faculty conceptions:
  - Non Use by faculty
  - Inappropriate Use by Faculty

Professional Development Providers Need to Understand Faculty Conceptions:
- Identify faculty strengths (build on p-prims)
- Identify “gaps” in faculty conceptions (help bridge gap)
- Identify conflicting conceptions (promote disequilibrium)
Overview of Study

Exploratory Study – Small Sample

• Initial model based on 6 UMN faculty

• Refine and expand the initial model based on 24 interviews with faculty from different institutions in the state of MN

• Determine the distribution of conceptions among faculty using a larger national sample

• Sharpen understanding using an international sample

Focused Study – Large Sample
The Interview Tool

To investigate faculty conceptions, we developed a 1½ - 2 hour interview based on instructional artifacts:

1st) 3 Instructor solutions: varied in the details of their explanation, physics approach, and presentation structure

2nd) 5 Student solutions: based on actual final examination solutions at the University of Minnesota to represent features of student practice

3rd) 4 Problem types: represent a range of the types of problems used in introductory physics courses

All artifacts were based on one problem -- instructors were given the problem and asked to solve it on their own before the interview.
Problem Used in the Interview

You are whirling a stone tied to the end of a string around in a vertical circle having a radius of 65 cm. You wish to whirl the stone fast enough so that when it is released at the point where the stone is moving directly upward it will rise to a maximum height of 23 meters above the lowest point in the circle. In order to do this, **what force will you have to exert on the string** when the stone passes through its lowest point one-quarter turn before release? Assume that by the time that you have gotten the stone going and it makes its final turn around the circle, you are holding the end of the string at a fixed position. **Assume also that air resistance can be neglected.** The stone weighs 18 N.

Final examination question (Fall, 1997)
Selecting Faculty for Interviews

Physics faculty in Minnesota (~107 meet selection criteria):

- taught introductory calculus-based physics course in the last 5 years
- could be visited and interviewed in a single day

Sample Randomly Selected:

30 faculty members

(From 35 contacted, 5 declined to be interviewed)

Roughly evenly divided among:

1) Community College (CC) N = 7
2) Private College (PC) N = 9
3) Research University (RU) N = 6
4) State University (SU) N = 8

Interviews were videotaped and the audio portion transcribed:

~ 30 pages of text/interview
Overview of Study

Exploratory Study – Small Sample

First

• Initial model based on 6 UMN faculty
  - Refine and expand the initial model based on 24 interviews with faculty from different institutions in the state of MN
  - Determine the distribution of conceptions among faculty using a larger national sample
  - Sharpen understanding using an international sample

Focused Study – Large Sample
Analysis Procedure

Break interview text into statements (~400 statements/instructor)

Develop initial concept map for the instructor (Based on ~1 year familiarity with data)

Revise Concept Map

If statements don’t fit well, then concept map is not correct

Try to fit statements into concept map

Make Concept Maps for Each Instructor

When all individual concept maps are complete

Combine concept maps to develop composite maps
Why Concept Map?

Concept Maps allow for:

- **reduction** of complex data into visual representations
- **explicit connections** to be made between ideas that can then be tested
Main Concept Map – Teaching & Learning of Problem Solving
This talk …
Conceptions of the Problem Solving Process

1. Linear Decision Making
   - A linear decision-making process (backtracking is not necessary)
   - Requires using an understanding of physics concepts
   - Can be done by experts

2. Exploration and Trial & Error
   - A process of exploration and trial and error
   - Start from known quantities and work towards target (i.e., working forwards)
   - Start from target quantities and work towards unknown (i.e., working backwards)

3. Creative Process
   - An art form that is different for each problem
   - Creative process involves...
The Problem Solving Process

the Cognitive Psychology perspective*

1. Qualitative Analysis
   - Visualize what is happening
   - Identify Options (e.g., principles or definitions)
   - Draw diagrams
   - Identify goal

2. Quantitative Analysis
   - Sequentially choose subproblems that reduce the gap between goal and known information
   - Implement

3. Answer
   - Goal attained?
   - Well specified?
   - Self consistent? (units, signs)
   - Consistent with other information? (e.g., special cases)
   - Optimal? (as clear and simple as possible)

4. Evaluate Answer
   - For experts, choices limited by:
     1) knowledge structure
     2) experience

*Based largely on Reif (1995) in AJP & Polya (1957) in *How to Solve it*
The Problem Solving Process
Conception 1: A linear decision-making

1. Quantitative Analysis
2. Qualitative Analysis
3. Answer
4. Evaluate

- “Know” principle(s) to use
- Clarify thinking
- Apply principles at points of interest
- Implement mathematical tools

? – How are the correct physics principles selected?
The Problem Solving Process

Conception 2: A Process of Exploration

1. Qualitative Analysis
   - Explore the problem

2. Quantitative Analysis
   - Come up with possible approaches to try
   - Try most promising approach

3. Answer

Options limited by:
1) Well organized knowledge structure
2) Ability to recognize similarities with previously solved problems

? – How are the number of possible approaches limited?
The Problem Solving Process
Conception 3: A Creative Process that is different for different problems

Problem -> Answer -> Solution
The Problem Solving Process
six research university instructors

Conception 1: A linear decision-making process
(backtracking is not necessary)

Step 1: “Know” physics principle(s) to use
Step 2: Clarify thinking (e.g. by using diagrams)
Step 3: Use tools (e.g., algebra, FBD) to get answer
Step 4: Evaluate answer

Conception 2: A process of exploration and trial and error process

Step 1: Decide on goal (e.g., target to known)
Step 2: “Explore” the problem and “decide” on possibly useful approaches or principles
Step 3: Try most promising approach
Step 4: Evaluate progress (return to step 2 if necessary)

Conception 3: A creative process that is different for each problem
(no process given)
There are similarities between the Cognitive Psychology view of the PS process and the five instructors who identified a process:

- Main “units” of the problem solving process are similar.
  - Qualitative analysis/clarification phase
  - Decision about approach/principles
  - Implementation
  - Evaluation
- Although the ordering and some details were different.
Preliminary Conclusions

There are **differences** between the Cognitive Psychology view of the PS process and the five instructors who identified a process:

- **Main difference is the identification of choices** in decision making

---

<table>
<thead>
<tr>
<th>No choices – predetermined (algorithm)</th>
<th>Instructors not familiar with expert/novice PS research</th>
<th>Infinite choices (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Decision Making</td>
<td>Monitoring progress is everything</td>
<td></td>
</tr>
<tr>
<td>Strategic Decision Making</td>
<td>Knowledge Structure</td>
<td></td>
</tr>
<tr>
<td>Trial &amp; Error</td>
<td>Strategy</td>
<td></td>
</tr>
<tr>
<td>Experience is everything</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Knowledge Structure**
- **Strategy**

---
<table>
<thead>
<tr>
<th>Teaching Activity</th>
<th>Curriculur Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>No choices – predetermined (algorithm)</td>
<td>Infinite choices (random)</td>
</tr>
<tr>
<td>Linear Decision Making</td>
<td>Strategic Decision Making</td>
</tr>
<tr>
<td>Instruction likely to emphasize error-free and mechanical performance</td>
<td>Instruction likely to emphasize knowledge organization and PS strategy</td>
</tr>
<tr>
<td>Lots of “Drill &amp; kill” single concept problems</td>
<td>Framework for organizing and using physics knowledge</td>
</tr>
</tbody>
</table>

**Implications for Curriculum Developers**

- **Linear Decision Making**: Instruction likely to emphasize error-free and mechanical performance.
- **Strategic Decision Making**: Instruction likely to emphasize knowledge organization and PS strategy.
- **Trial & Error**: Instruction likely to treat making choices as “magic”.
Implications for Professional Development Providers

1. There are things to build on: basic building blocks of problem solving process are there.

2. There are opposite views.
   - Good situation for professional development.

No choices – predetermined (algorithm)

Infinite choices (random)

Linear Decision Making → PER – Strategic Decision Making → Trial & Error
Overview of Study

Exploratory Study – Small Sample

That was …

• Initial model based on 6 UMN faculty

• Refine and expand the initial model based on 24 interviews with faculty from different institutions in the state of MN

• Determine the distribution of conceptions among faculty using a larger national sample

• Sharpen understanding using an international sample

Focused Study – Large Sample
Overview of Study

- **Exploratory Study –**
  - **Small Sample**
  
- **Focused Study –**
  - **Large Sample**

**Now**

- **Initial model based on 6 UMN faculty**

- **Refine and expand the initial model based on 24 interviews with faculty from different institutions in the state of MN**
  
  - (Community College, Private College, State University)

- **Determine the distribution of conceptions among faculty using a larger national sample**

- **Sharpen understanding using an international sample**

- **PERC Proceedings (2001)**
- **PERC Proceedings (2002)**
- **Henderson Dissertation (2002)**
Now ... 

We have interviewees that teach in different situations

• Are there similarities / differences in their conceptions of the process of solving physics problems in the context of an introductory physics course?
In the first stage

- 3 Conceptions
  
  1. Linear Decision-Making
  
  2. Exploration and Trial & Error
  
  3. Creative process
Targeted Analysis

Analyzing interviews are very time consuming

6 interviews ➔ 24 interviews

Target a feature of the initial model and cut down the analysis time

• Problem-solving process (least coherent & most puzzling)
• Identify parts of interview where statements about the problem-solving process were found in previous study
• Analyze additional interviews
  – Code only statements regarding the problem-solving process
  – Generate problem-solving process concept map for each individual interview
• Compare the new conceptions with initial model
  (randomly selected, non-research university faculty)
The Problem Solving Process

Conception 1: A linear decision-making (RU)

1. Quantitative Analysis
2. Qualitative Analysis
3. Answer
4. Evaluate Answer

- “Know” principle(s) to use
- Clarify thinking
- Apply principles at points of interest
- Implement mathematical tools

Problem

Solution
The Problem Solving Process

Conception 1: Linear decision-making (New)

1. Visualize the problem
2. Think about the situation in terms of relevant physics principles
3. Identify relevant information
4. Make and decide on assumptions, if necessary
   - Apply principles at points of interest
   - Implement mathematical tools
   - Check units of final answer
   - Evaluate reasonableness of answer
   - Evaluate reasonableness of assumptions

Qualitative Analysis
Quantitative Analysis
Answer
Evaluate Answer

Problem
Solution
The Problem Solving Process

Conception 2: A Process of Exploration (RU)

1. Qualitative Analysis
   • Explore the problem

2. Quantitative Analysis
   • Come up with possible approaches to try
   • Try most promising approach

3. Answer

Problem • Solution
The Problem Solving Process
Conception 2: A Process of Exploration (New)

1. Check Progress
   - Qualitative Analysis
     - Understand the problem situation
     - Think about principles & techniques that may apply
     - Have possible outline in mind of how to start the problem
   - Quantitative Analysis
     - Try most promising approach
     - If the approach doesn’t result in progress towards an answer, use another approach

2. Answer

3. Solution
The Problem Solving Process
Conception 3: A Creative Process that is different for different problems (RU)
While reading the problem, concentrate on separating the relevant information from the “story”.

- Brainstorm ideas about principles and techniques.

Back & forth

1  
Qualitative Analysis

2  
Quantitative Analysis

3  
Answer

4  
Evaluate Answer

Solution

- Analyze
- Organize
- Evaluate answer

(e.g., Painting – draw rough sketch, then organize the mess; Free Writing – write down every relevant idea, then organize)
<table>
<thead>
<tr>
<th>Conception 1: A linear decision-making process</th>
<th>Conception 2: A process of exploration and trial &amp; error</th>
<th>Conception 3: An art form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Visualize problem</td>
<td>Step 1: Understand problem</td>
<td>Step 1: Identify problem</td>
</tr>
<tr>
<td>Step 2: Clarify thinking</td>
<td>Step 2: Decide where to start</td>
<td>Step 2: Brainstorm ideas for possible principles, techniques, &amp; approaches</td>
</tr>
<tr>
<td>Step 3: “Know” the correct physics principle(s)</td>
<td>Step 3: “Explore” the problem and come up with approaches to try</td>
<td>Step 3: Analysis of approach in making progress towards answer</td>
</tr>
<tr>
<td>Step 4: Implement mathematics tools</td>
<td>Step 4: Try most promising approach to make progress towards answer</td>
<td>Step 4: Organize solution</td>
</tr>
<tr>
<td>Step 5: Evaluate answer</td>
<td>No evaluation of answer</td>
<td>Step 5: Evaluate answer</td>
</tr>
</tbody>
</table>
So …

In the description of the process of solving physics problems (Research & Non-Research University Faculty):

Similarkities

• 3 Conceptions

• Units of Problem Solveme
  • Qualitative analysis
  • Decision about approach
  • Implementation of techniques (math, diagrams, etc …)
  • Evaluation of process &/or answer

Differences

• More descriptive details of the problem solving process
• Order of some of the steps
On-going hypothesis generation ...

1. Supported the initial model with instructors from different settings

   – Are there only a few ways that physics faculty think about the process of problem solving in physics?

   – If so, A smaller number of variations is easier to handle for:
     1) developing appropriate curricular material
     2) providing proper professional development!
On-going hypothesis generation ...

2. Faculty conceptions are more detailed for this population

- Does this level of complexity depend on the type of institution?

1) Agreement with expert-novice problem solving research – need less professional development!

2) Disagreement with expert-novice problem solving research – more difficult to design proper professional development!
Thank you!

Please visit our website for more information:

http://groups.physics.umn.edu/physed/

Or send Email to:

vkuo@physics.umn.edu