Development of a Fiber Continuity and Light Calibration Device for NOvA

Jennifer L. Docktor
May 19, 2006

A University of Minnesota Master’s Plan B Project
Outline

- Physics Motivation
 - Neutrino mixing
- NOνA (NuMI Off-axis ν_e Appearance Experiment)
 - Interaction of a particle in the detector
 - NOνA detector design
- Fiber characterization experiments
 - Motivation/goals
 - WLS fiber attenuation tests
 - Fiber variation tests
 - Additional tests
- Summary and Conclusions
Physics Motivation

- **Neutrino oscillations**
 - Bruno Pontecorvo (and others) proposed that although neutrinos interact with matter as flavor eigenstates (ν_e, ν_μ, ν_τ) they travel through space as a superposition of mass eigenstates (ν_1, ν_2, ν_3).
 - It is possible to rotate from one basis to another.

- **Two-neutrino mixing formalism**
 - For muon and electron neutrinos the rotation is given by:

\[
\begin{pmatrix}
\nu_\mu \\
\nu_e
\end{pmatrix} =
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2
\end{pmatrix}
\]

 - The probability of the appearance of an electron neutrino in a muon neutrino beam is

\[
P(\nu_\mu \rightarrow \nu_e) \approx \sin^2 2\theta_{21} \sin^2 \left(\frac{1.27 \Delta m_{21}^2 L}{E} \right)
\]
NOνA Overview

- **Goals**
 - Observe the appearance of ν_e in an initially pure ν_μ beam in the L/E range of atmospheric neutrinos, from 100 to 1,000 km/GeV
 - Limit or measure the mass mixing parameters for this oscillation:
 $$P(\nu_\mu \to \nu_e) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{1.27 \Delta m_{32}^2 L}{E} \right)$$

- **NuMI beam and detectors**
 - Muon neutrinos produced at Fermilab, travel 810 km through the earth to northern Minnesota
 - Two detectors (near & far) positioned off-axis from the beam; optimizes the number of neutrino events in the energy range of oscillations
 - Detectors constructed from long PVC extrusions filled with liquid scintillator and a looped wavelength-shifting fiber.
Interaction of a particle in the detector

Neutrino interacting with nucleon in the liquid scintillator produces a charged lepton (electron neutrino produces an electron)

\[\nu_e N \rightarrow e^- X \]

The liquid scintillator fluoresces in response (emits photons of a longer wavelength – blue)

The flash of light is collected by a WLS fiber; the core contains a dye that shifts the blue light wavelength to green.

Approximately 4% of the light is trapped inside the multiclad fiber by total internal reflection

Light transmitted through the fiber to a photodetector (avalanche photodiode)
NOνA detector design

- **Far Detector (MN)**
 - Total mass 30 metric kilotons*
 - Located at the surface, 12 km off-axis from beam
 - Each plane contains 12 extrusion modules, with alternating vertical and horizontal alignment
 - Each module contains 32 cells with dimensions 3.87 cm x 6.0 cm x 15.7 m

- **Near Detector (Fermilab)**
 - Similar design to far detector but smaller dimensions
 - Refine understanding of the background, detector response, and neutrino beam energy spectrum

*Geometry described in the March 2005 proposal
Light Collection

- Each RPVC extrusion cell filled with liquid scintillator, 5% pseudocumene in a mineral oil base
- Encloses a looped WLS fiber of diameter 0.8mm
- Two ends of fiber are directed by a manifold and optical connector to one pixel of a photodetector (avalanche photodiode) to convert the optical signal to an electrical signal.

Avalanche Photodiode (APD)
Fiber Characterization Experiments

Motivation
- During factory assembly, one important task is to test the fiber continuity (check the fibers for damage) after insertion into the modules.
- This requires a non-invasive procedure (device) to measure the light transmission of fibers mounted in an optical connector.

Semester-long project goals
- Investigate fiber parameters to inform the design of the fiber continuity testing device
- Achieve reliable light output measurements from the WLS fiber at the 3% level of variation (target driven by the intrinsic variation of light output performance from one batch of fiber to another)

Getting Started
- Some time was required for acquisition of new/used equipment for this and related NOvA tasks
Initial Tests

- **WLS fiber attenuation**
 - Obtained a light-tight plywood box of dimensions 64 cm x 10 cm x 10 cm with blue light emitting diode (LED) wood dividers (light shines through a column perpendicularly onto fiber), holes for the fiber at each box end.
 - One end of the fiber filed, and glued (Elmer’s) to the end of the box near a Si PIN photodiode. LED powered by a 6V lantern battery.
 - Fiber light transmission measurements (1.2mm) as a function of LED distance from a PIN photodiode with a handheld DVM, across a 100 kΩ resistor in series with the photodiode.

![WLS Fiber Attenuation (1.2 mm)](image)
Initial Tests cont’d

- **WLS fiber attenuation (damaged and undamaged fiber)**
 - Undamaged fiber, then damage to the same fiber by bending.
 - There was a detectable decrease in the light output with damage to the fiber; shining the LED between the damage site and the photodiode increased the light output (reflections in fiber)

- **Blind Test**
 - Matthew Strait prepared 7 fibers, some nicked with a scalpel and some undamaged, and covered them with rubber tubing.
 - I measured the light output of the fibers, and could detect decreased light transmission in only 1 of the 3 fibers he damaged (fiber ends were trimmed to remove glue).
 - We were informed that neglecting to polish the fiber ends can give up to 30% variation in measurements between fibers.
Fiber Variation Tests

- **Changes to the setup:**
 - New power supply; connected the LED to 10V. New digital multimeter with 6-digit precision.
 - Replaced the box ends with sintra expanded PVC, and a tighter hole for the fiber (eliminates need for gluing)
 - 8 mm diameter WLS fiber, hand polish one end

- **WLS fiber variation**
 - Polished four 0.8mm diameter fibers the same length of the box (~64 cm)
 - Measured the potential difference across the resistor with the LED divider at a single position (40 cm from photodiode).
 - Removed and reinserted each fiber into the box several times.
 - Within fiber variation ranged from 5.4% to 15.6%, and the total variation in all measurements was 17.1%.
Fiber Variation Cont’d

More changes to the setup:

- A NOνA collaborator suggested that using diffuse reflection of light (shining on all sides of the fiber) and a wider solid angle could improve consistency of fiber illumination measurements.
- The wood LED cart was replaced by a white PVC tube and an LED shining through the top cap (first paper caps, then white plastic)
- Repeated measurements with the LED at a single position (40 cm)
- Light output higher. Within fiber variation ranged from 0.8% to 1.8%, and the total variation in all measurements was 5.7%.
Additional Tests

- **Condensation Tests**
 - Concern that condensation of fiber sections outside the liquid scintillator could affect light transmission.
 - Tested this by lowering a portion of the fiber into a water dish and removing it. There was not a measurable change in the light output of the fiber due to water droplets on the cladding.

- **Pseudocumene Tests**
 - It has been established that pseudocumene damages the polystyrene + wavelength shifter core of the fibers.
 - Two 1.2mm diameter fibers were each nicked with a scalpel in three sections and the light output measured. The fibers were submersed in 98% trimethylbenzene for a day and the (visible) core damage in mm was measured.
Summary & Conclusions

- **Semester project goals**
 - The target was to achieve reliable light output measurements from WLS fibers at the 3% level of intrinsic variation.
 - The most recent tests gave variations less than 2% for the same fiber, and 5.7% between different fibers from the same spool.
 - Although this was not at the desired level, it was substantial improvement from earlier measurements.

- **Considerations for the NO\(\nu\)A factory fiber continuity device:**
 - Controlling the fiber distance from the photodetector, fiber stability, and polishing the surface are essential.
 - Diffuse lighting of the fiber (reflections on all sides) and a wide solid angle provided more reproducible measurements.

- **Remaining work:**
 - Test longer fibers (actual length of the NO\(\nu\)A design) looped to the true bend radius of an extrusion cell.
 - Replace the PIN photodiode with the APD used in NO\(\nu\)A.
 - Repeat damage studies with varying concentrations of pseudocumene.
 - Assess temperature dependence of fiber measurements.
Acknowledgements

- Project adviser Dan Cronin-Hennessy
- Research colleague Matthew Strait
- Graduate student Tom Kelley (equipment)
- Leon Mualem (equipment, fiber polishing)
- NOvA collaborators